Package: simsem 0.5-16

simsem: SIMulated Structural Equation Modeling

Provides an easy framework for Monte Carlo simulation in structural equation modeling, which can be used for various purposes, such as such as model fit evaluation, power analysis, or missing data handling and planning.

Authors:Sunthud Pornprasertmanit [aut], Patrick Miller [aut], Alexander Schoemann [aut], Terrence D. Jorgensen [aut, cre], Corbin Quick [ctb]

simsem_0.5-16.tar.gz
simsem_0.5-16.zip(r-4.5)simsem_0.5-16.zip(r-4.4)simsem_0.5-16.zip(r-4.3)
simsem_0.5-16.tgz(r-4.4-any)simsem_0.5-16.tgz(r-4.3-any)
simsem_0.5-16.tar.gz(r-4.5-noble)simsem_0.5-16.tar.gz(r-4.4-noble)
simsem_0.5-16.tgz(r-4.4-emscripten)simsem_0.5-16.tgz(r-4.3-emscripten)
simsem.pdf |simsem.html
simsem/json (API)

# Install 'simsem' in R:
install.packages('simsem', repos = c('https://tdjorgensen.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.40 score 276 scripts 603 downloads 9 mentions 81 exports 6 dependencies

Last updated 4 years agofrom:a9f39767e0. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winNOTENov 03 2024
R-4.5-linuxNOTENov 03 2024
R-4.4-winNOTENov 03 2024
R-4.4-macNOTENov 03 2024
R-4.3-winOKNov 03 2024
R-4.3-macOKNov 03 2024

Exports:analyzeanovabindbindDistbindscoefcombineSimcontinuousCoveragecontinuousPowercreateDatadrawestmodelestmodel.cfaestmodel.pathestmodel.semexportDatafindCoveragefindFactorInterceptfindFactorMeanfindFactorResidualVarfindFactorTotalCovfindFactorTotalVarfindIndInterceptfindIndMeanfindIndResidualVarfindIndTotalVarfindPossibleFactorCorfindPowerfindRecursiveSetgenerategetCIwidthgetCoveragegetCutoffgetCutoffNestedgetCutoffNonNestedgetExtraOutputgetPopulationgetPowergetPowerFitgetPowerFitNestedgetPowerFitNonNestedimposeimposeMissinginspectlikRatioFitmissmodelmodel.cfamodel.lavaanmodel.pathmodel.semmultipleAllEqualplotCIwidthplotCoverageplotCutoffplotCutoffNestedplotCutoffNonNestedplotDistplotLogitMissplotMisfitplotPowerplotPowerFitplotPowerFitNestedplotPowerFitNonNestedpopDiscrepancypopMisfitMACSpValuepValueNestedpValueNonNestedrawDrawsetPopulationsimsummarysummaryConvergesummaryFitsummaryMisspecsummaryParamsummaryPopulationsummarySeedsummaryShortsummaryTime

Dependencies:lavaanMASSmnormtnumDerivpbivnormquadprog

Readme and manuals

Help Manual

Help pageTopics
Data analysis using the model specificationanalyze
Provide a comparison of nested models and nonnested models across replicationsanova,SimResult-method
Specify matrices for Monte Carlo simulation of structural equation modelsbind binds
Create a data distribution object.bindDist
Extract parameter estimates from a simulation resultcoef,SimResult-method
Combine result objectscombineSim
Find coverage rate of model parameters when simulations have randomly varying parameterscontinuousCoverage
Find power of model parameters when simulations have randomly varying parameterscontinuousPower
Create data from a set of drawn parameters.createData
Draw parameters from a 'SimSem' object.draw
Shortcut for data analysis template for simulation.estmodel estmodel.cfa estmodel.path estmodel.sem
Export data sets for analysis with outside SEM program.exportData
Find a value of independent variables that provides a given value of coverage ratefindCoverage
Find factor intercept from regression coefficient matrix and factor total meansfindFactorIntercept
Find factor total means from regression coefficient matrix and factor interceptfindFactorMean
Find factor residual variances from regression coefficient matrix, factor (residual) correlations, and total factor variancesfindFactorResidualVar
Find factor total covariance from regression coefficient matrix, factor residual covariancefindFactorTotalCov
Find factor total variances from regression coefficient matrix, factor (residual) correlations, and factor residual variancesfindFactorTotalVar
Find indicator intercepts from factor loading matrix, total factor mean, and indicator mean.findIndIntercept
Find indicator total means from factor loading matrix, total factor mean, and indicator intercept.findIndMean
Find indicator residual variances from factor loading matrix, total factor covariance, and total indicator variances.findIndResidualVar
Find indicator total variances from factor loading matrix, total factor covariance, and indicator residual variances.findIndTotalVar
Find the appropriate position for freely estimated correlation (or covariance) given a regression coefficient matrixfindPossibleFactorCor
Find a value of independent variables that provides a given value of power.findPower
Group variables regarding the position in mediation chainfindRecursiveSet
Generate data using SimSem templategenerate
Find confidence interval widthgetCIwidth
Find coverage rate of model parametersgetCoverage
Find fit indices cutoff given a priori alpha levelgetCutoff
Find fit indices cutoff for nested model comparison given a priori alpha levelgetCutoffNested
Find fit indices cutoff for non-nested model comparison given a priori alpha levelgetCutoffNonNested
Get extra outputs from the result of simulationgetExtraOutput
Extract the data generation population model underlying a result objectgetPopulation
Find power of model parametersgetPower
Find power in rejecting alternative models based on fit indices criteriagetPowerFit
Find power in rejecting nested models based on the differences in fit indicesgetPowerFitNested
Find power in rejecting non-nested models based on the differences in fit indicesgetPowerFitNonNested getPowerFitNonNested,SimResult,SimResult,missing-method getPowerFitNonNested,SimResult,SimResult,vector-method getPowerFitNonNested-methods
Impose MAR, MCAR, planned missingness, or attrition on a data setimpose imposeMissing
Extract information from a simulation resultinspect inspect,SimResult-method
Find the likelihood ratio (or Bayes factor) based on the bivariate distribution of fit indiceslikRatioFit
Specifying the missing template to impose on a datasetmiss
Data generation template and analysis template for simulation.model model.cfa model.path model.sem
Build the data generation template and analysis template from the lavaan resultmodel.lavaan
Test whether all objects are equalmultipleAllEqual
Plot a confidence interval width of a target parameterplotCIwidth
Make a plot of confidence interval coverage ratesplotCoverage
Plot sampling distributions of fit indices with fit indices cutoffsplotCutoff
Plot sampling distributions of the differences in fit indices between nested models with fit indices cutoffsplotCutoffNested
Plot sampling distributions of the differences in fit indices between non-nested models with fit indices cutoffsplotCutoffNonNested
Plot a distribution of a data distribution objectplotDist
Visualize the missing proportion when the logistic regression method is used.plotLogitMiss
Plot the population misfit in the result objectplotMisfit
Make a power plot of a parameter given varying parametersplotPower
Plot sampling distributions of fit indices that visualize power of rejecting datasets underlying misspecified modelsplotPowerFit
Plot power of rejecting a nested model in a nested model comparison by each fit indexplotPowerFitNested
Plot power of rejecting a non-nested model based on a difference in fit indexplotPowerFitNonNested
Find the discrepancy value between two means and covariance matricespopDiscrepancy
Find population misfit by sufficient statisticspopMisfitMACS
Find p-values (1 - percentile) by comparing a single analysis output from the result objectpValue
Find p-values (1 - percentile) for a nested model comparisonpValueNested
Find p-values (1 - percentile) for a non-nested model comparisonpValueNonNested
Draw values from vector or matrix objectsrawDraw
Set the data generation population model underlying an objectsetPopulation
Run a Monte Carlo simulation with a structural equation model.sim
Class '"SimDataDist"': Data distribution objectplotDist,SimDataDist-method SimDataDist-class summary,SimDataDist-method
Matrix object: Random parameters matrixSimMatrix-class summary,SimMatrix-method summaryShort,SimMatrix-method
Class '"SimMissing"'SimMissing-class summary,SimMissing-method
Class '"SimResult"': Simulation Result ObjectSimResult-class summary,SimResult-method summaryShort,SimResult-method
Class '"SimSem"'SimSem-class summary,SimSem-method
Vector object: Random parameters vectorSimVector-class summary,SimVector-method summaryShort,SimVector-method
Provide a comparison between the characteristics of convergent replications and nonconvergent replicationssummaryConverge
Provide summary of model fit across replicationssummaryFit
Provide summary of the population misfit and misspecified-parameter values across replicationssummaryMisspec
Provide summary of parameter estimates and standard error across replicationssummaryParam
Summarize the population model used for data generation underlying a result objectsummaryPopulation
Summary of a seed numbersummarySeed
Provide short summary of an object.summaryShort summaryShort,ANY-method summaryShort,matrix-method summaryShort,vector-method summaryShort-methods
Time summarysummaryTime