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analyze Data analysis using the model specification

Description

Data analysis using the model specification (linkS4class{SimSem}) or the mx model object (MxModel).
Data will be multiply imputed if the miss argument is specified.

Usage

analyze(model, data, package="lavaan", miss=NULL, aux=NULL, group = NULL,
mxMixture = FALSE, ...)
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Arguments

model The simsem model template (linkS4class{SimSem}) or the mx model object
(MxModel)

data The target dataset

package The package used in data analysis. Currently, only lavaan package can be used.

miss The missing object with the specification of auxiliary variable or the specifica-
tion for the multiple imputation.

aux List of auxiliary variables

group A group variable. This argument is applicable only when the model argument is
a MxModel object.

mxMixture A logical whether to the analysis model is a mixture model. This argument is
applicable when MxModel is used in the model argument only.

... Additional arguments in the lavaan function. See also lavOptions

Value

The lavaan object containing the output

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd.edu>), Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

Note that users can use functions provided by lavaan package (lavaan, cfa, sem, or growth) if
they wish to analyze data by lavaan directly.

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")

dat <- generate(CFA.Model,200)
out <- analyze(CFA.Model,dat)
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anova Provide a comparison of nested models and nonnested models across
replications

Description

This function will provide averages of model fit statistics and indices for nested models. It will also
provide average differences of fit indices and power for likelihood ratio tests of nested models.

Arguments

object SimResult object being described. Currently at least two objects must be in-
cluded as arguments

... any additional arguments, such as additional objects or for the function with
result object

Value

A data frame that provides the statistics described above from all parameters. For using with
linkS4class{SimResult}, the result is a list with two or three elements:

• summary: Average of fit indices across all replications

• diff: Average of the differences in fit indices across all replications

• varyParam: The statistical power of chi-square difference test given values of varying param-
eters (such as sample size or percent missing)

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>), Sunthud Porn-
prasertmanit (<psunthud@gmail.com>)

See Also

SimResult for the object input

Examples

## Not run:
loading1 <- matrix(0, 6, 1)
loading1[1:6, 1] <- NA
loading2 <- loading1
loading2[6,1] <- 0
LY1 <- bind(loading1, 0.7)
LY2 <- bind(loading2, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model1 <- model(LY = LY1, RPS = RPS, RTE = RTE, modelType="CFA")
CFA.Model2 <- model(LY = LY2, RPS = RPS, RTE = RTE, modelType="CFA")



6 bind

# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
# Need to make sure that both simResult calls have the same seed!
Output1 <- sim(5, n=500, model=CFA.Model1, generate=CFA.Model1, seed=123567)
Output2 <- sim(5, n=500, model=CFA.Model2, generate=CFA.Model1, seed=123567)
anova(Output1, Output2)

# The example when the sample size is varying
Output1b <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model1, generate=CFA.Model1, seed=123567)
Output2b <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model2, generate=CFA.Model1, seed=123567)
anova(Output1b, Output2b)

## End(Not run)

bind Specify matrices for Monte Carlo simulation of structural equation
models

Description

Create SimMatrix or SimVector object that specifies

1. Pattern of fixed/freed parameters for analysis

2. Population parameter values for data generation

3. Any model misspecification (true population parameter is different than the one specified) for
these parameters.

Each matrix in the Lisrel-style notation is specified in this way (e.g. LY, PS, and TE) and is used to
create a model analysis template and a data generation template for simulation through the model
function.

Usage

bind(free = NULL, popParam = NULL, misspec = NULL, symmetric = FALSE)
binds(free = NULL, popParam = NULL, misspec = NULL, symmetric = TRUE)

Arguments

free Required matrix or vector where each element represents a fixed or freed param-
eter used for analysis with structural equation models. Parameters can be freed
by setting the corresponding element in the matrix to NA, and can be fixed by
setting the value of the element to any number (e.g. 0). Parameters can be la-
beled using any character string. Any labeled parameter is considered to be free,
and parameters with identical labels will be constrained to equality for analysis.
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popParam Optional matrix or vector of identical dimension to the free matrix whose ele-
ments contain population parameter values for data generation in simulation.
For simlutation, each free parameter requires a population parameter value,
which is a quoted numeric value. Parameters that don’t have population values
are left as empty strings. Population parameters can also be drawn from a distri-
bution. This is done by wrapping a call to create 1 value from an existing random
generation function in quotes: e.g "runif(1,0,1)","rnorm(1,0,.01)" Every
replication in the simulation will draw a parameter value from this distribution.
The function checks that what is quoted is valid R.
If a random population parameter is constrained to equality in the free matrix,
each drawn population parameter value will be the same. More details on data
generation is available in ?generate, ?createData, and ?draw.
To simplify the most common case, popParam can take 1 value or distribution
and create a matrix or vector that assigns that population parameter or distribu-
tion to all freed parameters. These population values are used as starting values
for analysis by default.

misspec Optional matrix or vector of identical dimension to the free matrix whose ele-
ments contain population parameter values for specifying misspecification. El-
ements of the misspec matrix contain population parameters that are added to
parameters that are fixed or have an existing population value. These parameters
are also quoted numeric strings, and can optionally be drawn from distributions
as described above. To simplify the most common case, misspec can take 1 value
or distribution and create a matrix or vector that assigns that value or distribution
to all previously specified fixed parameters. Details about misspecification are
included the data generation functions.

symmetric Set as TRUE if the matrix created is symmetric (RPS/PS, RTE/TE). The function
binds can also be used, which defaults to symmetric = TRUE

Details

Bind is the first step in the bind -> model -> sim workflow of simsem, and this document outlines
the user interface or language used to describe these simulations. This interface, while complex,
enables a wide array of simulation specifications for structural equation models by building on
LISREL-style parameter specifications.

In simulations supported by simsem, a given parameter may be either fixed or freed for analysis,
but may optionally also have a population value or distribution for data generation, or a value
or distribution of misspecification. The purpose of bind is to stack these multiple meanings of a
parameter into an object recognized by simsem, a SimMatrix. Each matrix in the Lisrel notation
(e.g. LY, PS, TE, BE) becomes a SimMatrix, and is passed to the function model, which builds the
data generation template and an analysis template (a lavaan parameter table), collectively forming
a SimSem object, which can be passed to the function sim for simulation.

Note that any (dim)names attributes will be set to NULL for any vectors or matrices passed to free,
popParam, or misspec in order to prevent errors elsewhere in the workflow. To set custom variable
names, please use any of the indLab, facLab, covLab, or groupLab arguments to model().

Value

SimMatrix or SimVector object that used for model specification for analysis and data generation
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in simsem.

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd.edu>), Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• model To combine simMatrix objects into a complete data analysis and data generation tem-
plate, which is a SimSem object

• generate To generate data using the simsem template.

• analyze To analyze real or generated data using the simsem template.

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
summary(LY)

# Set both factor correlations to .05
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

# Misspecify all error covarainces
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- NA
RTE <- binds(error.cor,1,"runif(1,-.05,.05)")

bindDist Create a data distribution object.

Description

Create a data distribution object. There are two ways to specify nonnormal data-generation model.
To create nonnormal data by the copula method, margins and ... arguments are required. To create
data by Vale and Maurelli’s method, skewness and/or kurtosis arguments are required.

Usage

bindDist(margins = NULL, ..., p = NULL, keepScale = TRUE, reverse = FALSE,
copula = NULL, skewness = NULL, kurtosis = NULL)
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Arguments

margins A character vector specifying all the marginal distributions. The characters in
argument margins are used to construct density, distribution, and quantile func-
tion names. For example, "norm" can be used to specify marginal distribu-
tion, because "dnorm", "pnorm", and "qnorm" are all available. A user-defined
distribution or other distributions can be used. For example, "gl" function in
the "gld" package can be used to represent the generalized lambda distribution
where "dgl", "pgl", and "qgl" are available. See the description of margins
attribute of the Mvdc function for further details.

... A list whose each component is a list of named components, giving the param-
eter values of the marginal distributions. See the description of paramMargins
attribute of the Mvdc function for further details.

p Number of variables. If only one distribution object is listed, the p will make the
same distribution objects for all variables.

keepScale A vector representing whether each variable is transformed its mean and stan-
dard deviation or not. If TRUE, transform back to retain the mean and standard
deviation of a variable equal to the model implied mean and standard deviation
(with sampling error)

reverse A vector representing whether each variable is mirrored or not. If TRUE, reverse
the distribution of a variable (e.g., from positive skewed to negative skewed. If
one logical value is specified, it will apply to all variables.

copula A copula class that represents the multivariate distribution, such as ellipCopula,
normalCopula, or archmCopula. When this copula argument is specified, the
data-transformation method from Mair, Satorra, and Bentler (2012) is used. If
this copula argument is not specified, the naive Gaussian copula is used such
that the correlation matrix is direct applied to the multivariate Gaussian copula.
The correlation matrix will be equivalent to the Spearman’s correlation (rank
correlation) of the resulting data.

skewness A vector of skewness of each variable. The Vale & Maurelli (1983) method is
used in data generation.

kurtosis A vector of (excessive) kurtosis of each variable. The Vale & Maurelli (1983)
method is used in data generation.

Value

SimDataDist that saves analysis result from simulate data.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Mair, P., Satorra, A., & Bentler, P. M. (2012). Generating nonnormal multivariate data using copu-
las: Applications to SEM. Multivariate Behavioral Research, 47, 547-565.

Vale, C. D. & Maurelli, V. A. (1983) Simulating multivariate nonormal distributions. Psychome-
trika, 48, 465-471.
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See Also

• SimResult for the type of resulting object

Examples

# Create data based on Vale and Maurelli's method by specifying skewness and kurtosis
dist <- bindDist(skewness = c(0, -2, 2), kurtosis = c(0, 8, 4))

## Not run:
library(copula)

# Create three-dimensional distribution by gaussian copula with
# the following marginal distributions
# 1. t-distribution with df = 2
# 2. chi-square distribution with df = 3
# 3. normal distribution with mean = 0 and sd = 1

# Setting the attribute of each marginal distribution
d1 <- list(df=2)
d2 <- list(df=3)
d3 <- list(mean=0, sd=1)

# Create a data distribution object by setting the names of each distribution
# and their arguments
dist <- bindDist(c("t", "chisq", "norm"), d1, d2, d3)

# Create data by using Gumbel Copula as the multivariate distribution
dist <- bindDist(c("t", "chisq", "norm"), d1, d2, d3, copula = gumbelCopula(2, dim = 3))

# Reverse the direction of chi-square distribution from positively skew to negatively skew
dist <- bindDist(c("t", "chisq", "norm"), d1, d2, d3, copula = gumbelCopula(2, dim = 3),
reverse = c(FALSE, TRUE, FALSE))

## End(Not run)

coef Extract parameter estimates from a simulation result

Description

Extract parameter estimates from a simulation result. This function is similar to the inspect method
with what = "coef".

Arguments

object The target SimResult object
improper Specify whether to include the information from the replications with improper

solutions
nonconverged Specify whether to include the information from the nonconvergent replications
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Value

Parameter estimates of each replication

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

SimResult for the object input

Examples

## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")

# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model, n=200)
coef(Output)
coef(Output, improper = TRUE)

## End(Not run)

combineSim Combine result objects

Description

Combine result objects into a single result object

Usage

combineSim(...)

Arguments

... Result objects, SimResult
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Value

A combined result object

Author(s)

Terry Jorgensen (University of Kansas; <TJorgensen314@gmail.com>), Sunthud Pornprasertmanit
(<psunthud@gmail.com>)

See Also

Result object (SimResult)

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")
Output1 <- sim(5, CFA.Model, n=200, seed=123321)
Output2 <- sim(4, CFA.Model, n=200, seed=324567)
Output3 <- sim(3, CFA.Model, n=200, seed=789987)
Output <- combineSim(Output1, Output2, Output3)
summary(Output)

continuousCoverage Find coverage rate of model parameters when simulations have ran-
domly varying parameters

Description

A function to find the coverage rate of confidence intervals in a model when one or more of the
simulations parameters vary randomly across replications.

Usage

continuousCoverage(simResult, coverValue = NULL, contN = TRUE, contMCAR = FALSE,
contMAR = FALSE, contParam = NULL, coverParam = NULL, pred = NULL)
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Arguments

simResult SimResult that includes at least one randomly varying parameter (e.g. sample
size, percent missing, model parameters)

coverValue A target value used that users wish to find the coverage rate of that value (e.g.,
0). If NULL, the parameter values will be used.

contN Logical indicating if N varies over replications.

contMCAR Logical indicating if the percentage of missing data that is MCAR varies over
replications.

contMAR Logical indicating if the percentage of missing data that is MAR varies over
replications.

contParam Vector of parameters names that vary over replications.

coverParam Vector of parameters names that the user wishes to find coverage rate for. This
can be a vector of names (e.g., "f1=~y2", "f1~~f2"). If parameters are not spec-
ified, coverage rates for all parameters in the model will be returned.

pred A list of varying parameter values that users wish to find statistical power from.

Details

In this function, the coverage (which can be 0 or 1) is regressed on randomly varying simulation
parameters (e.g., sample size, percentage of missing data, or model parameters) using logistic re-
gression. For a set of independent variables values, the predicted probability from the logistic
regression equation is the predicted coverage rate.

Value

Data frame containing columns representing values of the randomly varying simulation parameters,
and coverage rates for model parameters of interest.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>), Alexander M. Schoemann (East Carolina
University; <schoemanna@ecu.edu>)

See Also

• SimResult to see how to create a simResult object with randomly varying parameters.

Examples

## Not run:
# Specify Sample Size by n
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
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# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))
summary(Output)

# Find the coverage rates of all combinations of different sample size and percent MCAR missing
Ccover <- continuousCoverage(Output, contN = TRUE, contMCAR = TRUE)
Ccover

# Find the coverage rates of parameter estimates when sample size is 200
# and percent MCAR missing is 0.3
Ccover2 <- continuousCoverage(Output, coverValue=0, contN = TRUE, contMCAR = TRUE,

pred=list(N = 200, pmMCAR = 0.3))
Ccover2

## End(Not run)

continuousPower Find power of model parameters when simulations have randomly
varying parameters

Description

A function to find the power of parameters in a model when one or more of the simulations param-
eters vary randomly across replications.

Usage

continuousPower(simResult, contN = TRUE, contMCAR = FALSE, contMAR = FALSE,
contParam = NULL, alpha = .05, powerParam = NULL, pred = NULL)

Arguments

simResult SimResult that includes at least one randomly varying parameter (e.g. sample
size, percent missing, model parameters)

contN Logical indicating if N varies over replications.

contMCAR Logical indicating if the percentage of missing data that is MCAR varies over
replications.

contMAR Logical indicating if the percentage of missing data that is MAR varies over
replications.

contParam Vector of parameters names that vary over replications.

alpha Alpha level to use for power analysis.

powerParam Vector of parameters names that the user wishes to find power for. This can be
a vector of names (e.g., "f1=~y2", "f1~~f2"). If parameters are not specified,
power for all parameters in the model will be returned.

pred A list of varying parameter values that users wish to find statistical power from.
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Details

A common use of simulations is to conduct power analyses, especially when using SEM (Muthen
& Muthen, 2002). Here, researchers select values for each parameter and a sample size and run a
simulation to determine power in those conditions (the proportion of generated datasets in which a
particular parameter of interest is significantly different from zero). To evaluate power at multiple
sample sizes, one simulation for each sample size must be run. By continuously varying sample
size across replications, only a single simulation is needed. In this simulation, the sample size for
each replication varies randomly across plausible sample sizes (e.g., sample sizes between 200 and
500). For each replication, the sample size and significance of each parameter (0 = not significant,
1 = significant) are recorded. When the simulation is complete, parameter significance is regressed
on sample size using logistic regression. For a given sample size, the predicted probability from
the logistic regression equation is the power to detect an effect at that sample size. This approach
can be extended to other randomly varying simulation parameters such as the percentage of missing
data, and model parameters.

Value

Data frame containing columns representing values of the randomly varying simulation parameters,
and power for model parameters of interest.

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>), Sunthud Porn-
prasertmanit (<psunthud@gmail.com>)

References

Muthen, L. K., & Muthen, B. O. (2002). How to use a Monte Carlo study to decide on sample size
and determine power. Structural Equation Modeling, 4, 599-620.

See Also

• SimResult to see how to create a simResult object with randomly varying parameters.

Examples

## Not run:
# Specify Sample Size by n
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
dat <- generate(CFA.Model, 50)
out <- analyze(CFA.Model, dat)

# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)
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Output <- sim(NULL, CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))
summary(Output)

# Find the power of all combinations of different sample size and percent MCAR missing
Cpow <- continuousPower(Output, contN = TRUE, contMCAR = TRUE)
Cpow

# Find the power of parameter estimates when sample size is 200 and percent MCAR missing is 0.3
Cpow2 <- continuousPower(Output, contN = TRUE, contMCAR = TRUE, pred=list(N = 200, pmMCAR = 0.3))
Cpow2

## End(Not run)

createData Create data from a set of drawn parameters.

Description

This function can be used to create data from a set of parameters created from draw, called a code-
paramSet. This function is used internally to create data, and is available publicly for accessibility
and debugging.

Usage

createData(paramSet, n, indDist=NULL, sequential=FALSE, facDist=NULL,
errorDist=NULL, saveLatentVar = FALSE, indLab=NULL, facLab = NULL,
modelBoot=FALSE, realData=NULL, covData=NULL, empirical = FALSE)

Arguments

paramSet Set of drawn parameters from draw.

n Integer of desired sample size.

indDist A SimDataDist object or list of objects for a distribution of indicators. If
one object is passed, each indicator will have the same distribution. Use when
sequential is FALSE.

sequential If TRUE, use a sequential method to create data such that the data from factor
are generated first and apply to a set of equations to obtain the data of indica-
tors. If FALSE, create data directly from model-implied mean and covariance of
indicators.

facDist A SimDataDist object or list of objects for the distribution of factors. If one ob-
ject is passed, all factors will have the same distribution. Use when sequential
is TRUE.

errorDist An object or list of objects of type SimDataDist indicating the distribution of
errors. If a single SimDataDist is specified, each error will be genrated with
that distribution.
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saveLatentVar If TRUE, the total latent variable scores, residual latent variable scores, and mea-
surement error scores are also provided as the "latentVar" attribute of the gen-
erated data by the following line: attr(generatedData, "latentVar"). The
sequential argument must be TRUE in order to use this option.

indLab A vector of indicator labels. When not specified, the variable names are x1, x2,
... xN.

facLab A vector of factor labels. When not specified, the variable names are f1, f2,
... fN.

modelBoot When specified, a model-based bootstrap is used for data generation. See de-
tails for further information. This argument requires real data to be passed to
readData.

realData A data.frame containing real data. The data generated will follow the distribu-
tion of this data set.

covData A data.frame containing covariate data, which can have any distributions. This
argument is required when users specify GA or KA matrices in the model template
(SimSem).

empirical Logical. If TRUE, the specified parameters are treated as sample statistics and
data are created to get the specified sample statistics. This argument is applicable
when multivariate normal distribution is specified only.

Details

This function will use the modified mvrnorm function (from the MASS package) by Paul E. Johnson
to create data from model implied covariance matrix if the data distribution object (SimDataDist) is
not specified. The modified function is just a small modification from the original mvrnorm function
such that the data generated with the sample sizes of n and n + k (where k > 0) will be replicable in
the first n rows.

It the data distribution object is specified, either the copula model or the Vale and Maurelli’s method
is used. For the copula approach, if the copula argument is not specified in the data distribution
object, the naive Gaussian copula is used. The correlation matrix is direct applied to the multi-
variate Gaussian copula. The correlation matrix will be equivalent to the Spearman’s correlation
(rank correlation) of the resulting data. If the copula argument is specified, such as ellipCopula,
normalCopula, or archmCopula, the data-transformation method from Mair, Satorra, and Bentler
(2012) is used. In brief, the data (X) are created from the multivariate copula. The covariance
from the generated data is used as the starting point (S). Then, the target data (Y ) with the target
covariance as model-implied covariance matrix (Σ0) can be created:

Y = XS−1/2Σ
1/2
0 .

See bindDist for further details. For the Vale and Maurelli’s (1983) method, the code is brought
from the lavaan package.

For the model-based bootstrap, the transformation proposed by Yung & Bentler (1996) is used. This
procedure is the expansion from the Bollen and Stine (1992) bootstrap including a mean structure.
The model-implied mean vector and covariance matrix with trivial misspecification will be used in
the model-based bootstrap if misspec is specified. See page 133 of Bollen and Stine (1992) for a
reference.
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Internally, parameters are first drawn, and data is then created from these parameters. Both of these
steps are available via the draw and createData functions respectively.

Value

A data.frame containing simulated data from the data generation template. A variable "group" is
appended indicating group membership.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>), Patrick Miller (University of Notre Dame;
<pmille13@nd.edu>). The original code of mvrnorm function is based on the MASS package slightly
modified by Paul E. Johnson. The code for data-transformation in multivariate copula is based on
Mair et al. (2012) article. The code for Vale and Maurelli (1983) is slightly modified from the
function provided in the lavaan package.

References

Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation
models. Sociological Methods and Research, 21, 205-229.

Mair, P., Satorra, A., & Bentler, P. M. (2012). Generating nonnormal multivariate data using copu-
las: Applications to SEM. Multivariate Behavioral Research, 47, 547-565.

Vale, C. D. & Maurelli, V. A. (1983) Simulating multivariate nonormal distributions. Psychome-
trika, 48, 465-471.

Yung, Y.-F., & Bentler, P. M. (1996). Bootstrapping techniques in analysis of mean and covari-
ance structures. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation
modeling: Issues and techniques (pp. 195-226). Mahwah, NJ: Erlbaum.

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")

# Draw a parameter set for data generation.
param <- draw(CFA.Model)

# Generate data from the first group in the paramList.
dat <- createData(param[[1]], n = 200)



draw 19

draw Draw parameters from a SimSem object.

Description

This function draws parameters from a SimSem template, for debugging or other use. Used internally
to create data. Data can be created in one step from a SimSem object using generate.

Usage

draw(model, maxDraw=50, misfitBounds=NULL, averageNumMisspec=FALSE,
optMisfit = NULL, optDraws = 50, misfitType = "f0", createOrder = c(1, 2, 3),
covData = NULL)

Arguments

model A SimSem object.

maxDraw Integer specifying the maximum number of attempts to draw a valid set of pa-
rameters (no negative error variance, standardized coefficients over 1).

misfitBounds Vector that contains upper and lower bounds of the misfit measure. Sets of
parameters drawn that are not within these bounds are rejected.

averageNumMisspec

If TRUE, the provided fit will be divided by the number of misspecified parame-
ters.

optMisfit Character vector of either "min" or "max" indicating either maximum or mini-
mum optimized misfit. If not null, the set of parameters out of the number of
draws in "optDraws" that has either the maximum or minimum misfit of the
given misfit type will be returned.

optDraws Number of parameter sets to draw if optMisfit is not null. The set of parameters
with the maximum or minimum misfit will be returned.

misfitType Character vector indicating the fit measure used to assess the misfit of a set of
parameters. Can be "f0", "rmsea", "srmr", or "all".

createOrder The order of 1) applying equality/inequality constraints, 2) applying misspeci-
fication, and 3) fill unspecified parameters (e.g., residual variances when total
variances are specified). The specification of this argument is a vector of differ-
ent orders of 1 (constraint), 2 (misspecification), and 3 (filling parameters). For
example, c(1, 2, 3) is to apply constraints first, then add the misspecification,
and finally fill all parameters.

covData A data.frame containing covariate data, which can have any distributions. This
argument is required when users specify GA or KA matrices in the model template
(SimSem).
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Value

Nested list of drawn parameters in the form [[Group]][[param,misspec,misOnly]][[SimMatrix]].
E.g. The LY parameter matrix of the first group would be indexed as obj[[1]]$param$LY. The val-
ues in $param are the raw parameter values with no misspecification. The values in $misspec are
raw parameter values + misspecification. The values in $misOnly are only the misspecification
values.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>), Patrick Miller (University of Notre Dame;
<pmille13@nd.edu>)

See Also

createData To generate random data using a set of parameters from draw

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")

# Draw a parameter set for data generation.
param <- draw(CFA.Model)

# Example of Multiple Group Model with Weak Invariance

loading.in <- matrix(0, 6, 2)
loading.in[1:3, 1] <- c("load1", "load2", "load3")
loading.in[4:6, 2] <- c("load4", "load5", "load6")
mis <- matrix(0,6,2)
mis[loading.in == "0"] <- "runif(1, -0.1, 0.1)"
LY.in <- bind(loading.in, "runif(1, 0.7, 0.8)", mis)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))
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VTE <- bind(rep(NA, 6), 0.51)

VPS1 <- bind(rep(1, 2))

VPS2 <- bind(rep(NA, 2), c(1.1, 1.2))

# Inequality constraint
script <- "
sth := load1 + load2 + load3
load4 == (load5 + load6) / 2
load4 > 0
load5 > 0
sth2 := load1 - load2
"

# Model Template
weak <- model(LY = LY.in, RPS = RPS, VPS=list(VPS1, VPS2), RTE = RTE, VTE=VTE, ngroups=2,

modelType = "CFA", con=script)

# Constraint --> Misspecification --> Fill Parameters
draw(weak, createOrder=c(1, 2, 3))

# Constraint --> Fill Parameters --> Misspecification
draw(weak, createOrder=c(1, 3, 2))

# Misspecification --> Constraint --> Fill Parameters
draw(weak, createOrder=c(2, 1, 3))

# Misspecification --> Fill Parameters --> Constraint
draw(weak, createOrder=c(2, 3, 1))

# Fill Parameters --> Constraint --> Misspecification
draw(weak, createOrder=c(3, 1, 2))

# Fill Parameters --> Misspecification --> Constraint
draw(weak, createOrder=c(3, 2, 1))

estmodel Shortcut for data analysis template for simulation.

Description

Creates a data analysis template (lavaan parameter table) for simulations with structural equation
models based on Y-side LISREL design matrices. Each corresponds to a LISREL matrix, but must
be a matrix or a vector. In addition to the usual Y-side matrices in LISREL, both PS and TE can be
specified using correlations (RPS, RTE) and scaled by a vector of residual variances (VTE, VPS)
or total variances (VY, VE). Multiple groups are supported by passing lists of matrices or vectors to
arguments, or by specifying the number of groups.
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Usage

estmodel(LY = NULL, PS = NULL, RPS = NULL, TE = NULL, RTE = NULL, BE = NULL,
VTE = NULL, VY = NULL, VPS = NULL, VE = NULL, TY = NULL, AL = NULL,
MY = NULL, ME = NULL, KA = NULL, GA = NULL, modelType, indLab = NULL,
facLab = NULL, covLab = NULL, groupLab = "group", ngroups = 1, con = NULL)

estmodel.cfa(LY = NULL,PS = NULL,RPS = NULL, TE = NULL,RTE = NULL, VTE = NULL,
VY = NULL, VPS = NULL, VE = NULL, TY = NULL, AL = NULL, MY = NULL, ME = NULL,
KA = NULL, GA = NULL, indLab = NULL, facLab = NULL, covLab = NULL,
groupLab = "group", ngroups = 1, con = NULL)

estmodel.path(PS = NULL, RPS = NULL, BE = NULL, VPS = NULL, VE = NULL, AL = NULL,
ME = NULL, KA = NULL, GA = NULL, indLab = NULL, facLab = NULL, covLab = NULL,
groupLab = "group", ngroups = 1,con = NULL)

estmodel.sem(LY = NULL,PS = NULL,RPS = NULL, TE = NULL,RTE = NULL, BE = NULL,
VTE = NULL, VY = NULL, VPS = NULL, VE = NULL, TY = NULL, AL = NULL, MY = NULL,
ME = NULL, KA = NULL, GA = NULL, indLab = NULL, facLab = NULL, covLab = NULL,
groupLab = "group", ngroups = 1, con = NULL)

Arguments

LY Factor loading matrix from endogenous factors to Y indicators (need to be a
matrix or a list of matrices).

PS Residual covariance matrix among endogenous factors (need to be a symmetric
matrix or a list of symmetric matrices).

RPS Residual correlation matrix among endogenous factors (need to be a symmetric
matrix or a list of symmetric matrices).

TE Measurement error covariance matrix among Y indicators (need to be a sym-
metric matrix or a list of symmetric matrices).

RTE Measurement error correlation matrix among Y indicators (need to be a sym-
metric matrix or a list of symmetric matrices).

BE Regression coefficient matrix among endogenous factors (need to be a matrix or
a list of matrices).

VTE Measurement error variance of indicators (need to be a vector or a list of vec-
tors).

VY Total variance of indicators (need to be a vector or a list of vectors). NOTE: Ei-
ther measurement error variance or indicator variance is specified. Both cannot
be simultaneously specified.

VPS Residual variance of factors (need to be a vector or a list of vectors).

VE Total variance of of factors (need to be a vector or a list of vectors). NOTE:
Either residual variance of factors or total variance of factors is specified. Both
cannot be simulatneously specified.

TY Measurement intercepts of Y indicators. (need to be a vector or a list of vectors).

AL Endogenous factor intercept (need to be a vector or a list of vectors).

MY Overall Y indicator means. (need to be a vector or a list of vectors). NOTE:
Either measurement intercept of indicator mean can be specified. Both cannot
be specified simultaneously.
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ME Total mean of endogenous factors (need to be a vector or a list of vectors).
NOTE: Either endogenous factor intercept or total mean of endogenous factor is
specified. Both cannot be simultaneously specified.

KA Regression coefficient matrix from covariates to indicators (need to be a ma-
trix or a list of matrices). KA is needed when (fixed) exogenous covariates are
needed only.

GA Regression coefficient matrix from covariates to factors (need to be a matrix or
a list of matrices). GA is needed when (fixed) exogenous covariates are needed
only.

modelType "CFA", "Sem", or "Path". This is specified to ensure that the analysis and data
generation template created based on specified matrices in model correspond to
what the user intends.

indLab Character vector of indicator labels. If left blank, automatic labels will be gen-
erated as y1, y2, ... yy.

facLab Character vector of factor labels. If left blank, automatic labels will be generated
as f1, f2, ... ff

covLab Character vector of covariate labels. If left blank, automatic labels will be gen-
erated as z1, z2, ... zz

groupLab Character of group-variable label (not the names of each group). If left blank,
automatic labels will be generated as group

ngroups Integer. Number of groups for data generation, defaults to 1. If larger than one,
all specified matrices will be repeated for each additional group. If any matrix
argument is a list, the length of this list will be the number of groups and ngroups
is ignored.

con Additional parameters (phantom variables), equality constraints, and inequality
constraints that users wish to specify in the model. The additional parameters
are specified in lavaan syntax. The allowed operator are ":=" (is defined as),
"==" (is equal to), "<" (is less than), and ">" (is greater than). Names used in
the syntax are the labels defined on free parameters in the model except that the
left-handed-side name of ":=" is a new parameter name. On the right hand side
of all operators, any mathematical expressions are allowed, e.g., "newparam :=
(load1 + load2 + load3)/3". For the "<" and ">" operators in data generation,
if the parameters relation is not hold (e.g., the left hand side is less than the right
hand side in the ">" operator), the left hand side parameters will be changed such
that the relation holds with a very small difference (i.e., 0.000001). For example,
in "load1 > load2", if load1 is 0.5 and load2 is 0.6, load1 will be changed to 0.6
+ 0.000001 = 0.600001.

Details

This function contains default settings:

For modelType="CFA", LY is required. As the default, the on-diagonal elements of PS are fixed as 1
and the off-diagonal elements of PS are freely estimated. The off-diagonal elements of TE are freely
estimated and the off-diagonal elements of TE are fixed to 0. The AL elements are fixed to 0. The TY
elements are freely estimated.
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For modelType="Path", BE is required. As the default, the on-diagonal elements of PS are freely
estimated, the off-diagonal elements between exogenous variables (covariance between exogenous
variables) are freely estimated, and the other off-diagonal elements are fixed to 0. The AL elements
are freely estimated.

For modelType="SEM", LY and BE are required. As the default, the on-diagonal elements of PS are
fixed to 1, the off-diagonal elements between exogenous factors (covariance between exogenous
factors) are freely estimated, and the other off-diagonal elements are fixed to 0. The off-diagonal
elements of TE are freely estimated and the off-diagonal elements of TE are fixed to 0. The AL
elements are fixed to 0. The TY elements are freely estimated.

The estmodel.cfa, estmodel.path, and estmodel.sem are the shortcuts for the estmodel func-
tion when modelType are "CFA", "Path", and "SEM", respectively.

Value

SimSem object that contains the data generation template (@dgen) and analysis template (@pt).

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• model To build data generation and data analysis template for simulation.

• sim For simulations using the SimSem template.

• generate To generate data using the SimSem template.

• analyze To analyze real or generated data using the SimSem template.

• draw To draw parameters using the SimSem template.

Examples

loading <- matrix(0, 12, 4)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:9, 3] <- NA
loading[10:12, 4] <- NA

CFA.Model <- estmodel(LY = loading, modelType = "CFA")

path <- matrix(0, 4, 4)
path[3, 1:2] <- NA
path[4, 3] <- NA
Path.Model <- estmodel(BE = path, modelType = "Path")

SEM.Model <- estmodel(BE = path, LY = loading, modelType="SEM")

# Shortcut
CFA.Model <- estmodel.cfa(LY = loading)
Path.Model <- estmodel.path(BE = path)
SEM.Model <- estmodel.sem(BE = path, LY = loading)
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exportData Export data sets for analysis with outside SEM program.

Description

This function can be used to export data created from a set of parameters created from draw, called
a codeparamSet. This function can export data to be analyzed with either Mplus or LISREL.

Usage

exportData(nRep, model, n, program = "Mplus", fileStem = "sim", miss = NULL,
missCode = -999, datafun=NULL, pmMCAR = NULL, pmMAR = NULL, facDist = NULL,
indDist = NULL, errorDist = NULL, sequential = FALSE, modelBoot = FALSE,
realData = NULL, maxDraw = 50, misfitType = "f0", misfitBounds = NULL,
averageNumMisspec = NULL, optMisfit=NULL, optDraws = 50, seed = 123321,
silent = FALSE, multicore = FALSE, numProc = NULL, params = FALSE)

Arguments

nRep Number of replications. Users can specify as NULL and specify n, pmMCAR, and
pmMAR

model SimSem object created by model. Will be used to generate data and analyze it.

n Sample size. This argument is not necessary except the user wish to vary sample
size across replications. The sample size here is a vector of sample size in
integers. For the random distribution object, if the resulting value has decimal,
the value will be rounded.

program Statistical program that will be used to analyze data. Currently only Mplys and
LISREL are supported.

fileStem The stem of the filename(s) for file(s) output. For example, a fileStem of "sim"
will result in files named sim1.dat, sim2.dat, etc.

miss Missing data handling template, created by the function miss.

missCode Missing data code, NA will be replaced by this value for all missing values in
exported data.

datafun Function to be applied to generated data set at each replication.

pmMCAR The percent completely missing at random. This argument is not necessary
except the user wish to vary percent missing completely at random across repli-
cations. The pmMCAR here is a vector of percent missing, which the values can be
in between 0 and 1 only. The specification of objMissing is not needed (but is
needed if users wish to specify complex missing value data generation or wish
to use multiple imputation).

pmMAR The percent missing at random. This argument is not necessary except the user
wish to vary percent missing at random across replications. The pmMAR here is a
vector of percent missing, which the values can be in between 0 and 1 only. The
specification of objMissing is not needed (but is needed if users wish to specify
complex missing value data generation or wish to use multiple imputation).
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facDist A SimDataDist object or list of objects for the distribution of factors. If one ob-
ject is passed, all factors will have the same distribution. Use when sequential
is TRUE.

indDist A SimDataDist object or list of objects for a distribution of indicators. If
one object is passed, each indicator will have the same distribution. Use when
sequential is FALSE.

errorDist An object or list of objects of type SimDataDist indicating the distribution of
errors. If a single SimDataDist is specified, each error will be genrated with
that distribution.

sequential If TRUE, use a sequential method to create data such that the data from factor
are generated first and apply to a set of equations to obtain the data of indica-
tors. If FALSE, create data directly from model-implied mean and covariance of
indicators.

modelBoot When specified, a model-based bootstrap is used for data generation. See draw
for further information. This argument requires real data to be passed to realData.

realData A data.frame containing real data. The data generated will follow the distribu-
tion of this data set.

maxDraw Integer specifying the maximum number of attempts to draw a valid set of pa-
rameters (no negative error variance, standardized coefficients over 1).

misfitType Character vector indicating the fit measure used to assess the misfit of a set of
parameters. Can be "f0", "rmsea", "srmr", or "all".

misfitBounds Vector that contains upper and lower bounds of the misfit measure. Sets of
parameters drawn that are not within these bounds are rejected.

averageNumMisspec

If TRUE, the provided fit will be divided by the number of misspecified parame-
ters.

optMisfit Character vector of either "min" or "max" indicating either maximum or mini-
mum optimized misfit. If not null, the set of parameters out of the number of
draws in "optDraws" that has either the maximum or minimum misfit of the
given misfit type will be returned.

optDraws Number of parameter sets to draw if optMisfit is not null. The set of parameters
with the maximum or minimum misfit will be returned.

seed Random number seed. Reproducibility across multiple cores or clusters is en-
sured using R’Lecuyer package.

silent If TRUE, suppress warnings.

multicore Use multiple processors within a computer. Specify as TRUE to use it.

numProc Number of processors for using multiple processors. If it is NULL, the package
will find the maximum number of processors.

params If TRUE, the parameters from each replication will be returned.

Value

Text files saved to the current working directory. If program = "Mplus" one file is output for each
replication, and an extra file is output with the names of all saved data sets (this file can be used
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with the MONTECARLO command in Mplus). If program = "LISREL" one file is output with
each replication stacked on top of the next (this file can be used with the RP command in LISREL).
If program = TRUE, a list of parameter values for each replication is returned.

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")

## Export 20 replications to an external data file (not run).
#exportData(20, CFA.Model, 200)

findCoverage Find a value of independent variables that provides a given value of
coverage rate

Description

Find a value of independent variable that provides a given value of coverage rate. If there are more
than one varying parameters, this function will find the value of the target varying parameters given
the values of the other varying parameters.

Usage

findCoverage(coverTable, iv, target)

Arguments

coverTable A data.frame providing varying parameters and coverage rates of each param-
eter. This table is obtained by getPower or continuousPower function.

iv The target varying parameter that users would like to find the value providing
a given power from. This argument can be specified as the index of the target
column or the name of target column (i.e., "iv.N" or "N")

target The target coverage rate
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Value

There are five possible types of values provided:

• Value The varying parameter value that provides the coverage rate just under the specified
coverage rate (the adjacent value of varying parameter provides over power than the specified
power value).

• Minimum value The minimum value has already provided the low coverage rate (way under
the specified coverage rate). The value of varying parameters that provides exact coverage rate
may be lower than the minimum value. The example of varying parameter that can provides
the minimum value is sample size.

• Maximum value The maximum value has already provided the low coverage rate (way under
the specified coverage rate). The value of varying parameters that provides exact desired
power may be higher than the maximum value. The example of varying parameter that can
provides the maximum value is percent missing.

• NA There is no value in the domain of varying parameters that provides the coverage rate lower
than the desired coverage rate.

• Inf The coverage rate of all values in the varying parameters is 0 (specifically more than
0.0001) and any values of the varying parameters can be picked and still provide enough
power.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• getCoverage to find the coverage rate of parameter estimates

• continuousCoverage to find the coverage rate of parameter estimates for the result object
(linkS4class{SimResult}) with varying parameters.

Examples

## Not run:
# Specify Sample Size by n
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.4)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# Specify both sample size and percent missing completely at random. Note that more fine-grained
# values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1) and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, model=CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))

# Find the power of all possible combination of N and pmMCAR
cover <- getCoverage(Output, coverValue = 0)

# Find the sample size that provides the power of 0.8
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findCoverage(cover, "N", 0.20)

## End(Not run)

findFactorIntercept Find factor intercept from regression coefficient matrix and factor total
means

Description

Find factor intercept from regression coefficient matrix and factor total means for latent variable
models. In the path analysis model, this function will find indicator intercept from regression coef-
ficient and indicator total means.

Usage

findFactorIntercept(beta, factorMean = NULL, gamma = NULL, covmean = NULL)

Arguments

beta Regression coefficient matrix among factors

factorMean A vector of total (model-implied) factor (indicator) means. The default is that
all total factor means are 0.

gamma Regression coefficient matrix from covariates (column) to factors (rows)

covmean A vector of covariate means.

Value

A vector of factor (indicator) intercepts

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• findIndIntercept to find indicator (measurement) intercepts

• findIndMean to find indicator (measurement) total means

• findIndResidualVar to find indicator (measurement) residual variances

• findIndTotalVar to find indicator (measurement) total variances

• findFactorMean to find factor means

• findFactorResidualVar to find factor residual variances

• findFactorTotalVar to find factor total variances

• findFactorTotalCov to find factor covariances
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Examples

path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- 0.6
path[5, 2] <- path[8, 5] <- 0.6
path[6, 3] <- path[9, 6] <- 0.6
path[5, 1] <- path[8, 4] <- 0.4
path[6, 2] <- path[9, 5] <- 0.4
factorMean <- c(5, 2, 3, 0, 0, 0, 0, 0, 0)
findFactorIntercept(path, factorMean)

findFactorMean Find factor total means from regression coefficient matrix and factor
intercept

Description

Find factor total means from regression coefficient matrix and factor intercepts for latent variable
models. In the path analysis model, this function will find indicator total means from regression
coefficient and indicator intercept.

Usage

findFactorMean(beta, alpha = NULL, gamma = NULL, covmean = NULL)

Arguments

beta Regression coefficient matrix among factors

alpha Factor (indicator) intercept. The default is that all factor intercepts are 0.

gamma Regression coefficient matrix from covariates (column) to factors (rows)

covmean A vector of covariate means.

Value

A vector of factor (indicator) total means

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• findIndIntercept to find indicator (measurement) intercepts

• findIndMean to find indicator (measurement) total means

• findIndResidualVar to find indicator (measurement) residual variances

• findIndTotalVar to find indicator (measurement) total variances

• findFactorIntercept to find factor intercepts
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• findFactorResidualVar to find factor residual variances

• findFactorTotalVar to find factor total variances

• findFactorTotalCov to find factor covariances

Examples

path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- 0.6
path[5, 2] <- path[8, 5] <- 0.6
path[6, 3] <- path[9, 6] <- 0.6
path[5, 1] <- path[8, 4] <- 0.4
path[6, 2] <- path[9, 5] <- 0.4
intcept <- c(5, 2, 3, 0, 0, 0, 0, 0, 0)
findFactorMean(path, intcept)

findFactorResidualVar Find factor residual variances from regression coefficient matrix, fac-
tor (residual) correlations, and total factor variances

Description

Find factor residual variances from regression coefficient matrix, factor (residual) correlation ma-
trix, and total factor variances for latent variable models. In the path analysis model, this function
will find indicator residual variances from regression coefficient, indicator (residual) correlation
matrix, and total indicator variances.

Usage

findFactorResidualVar(beta, corPsi, totalVarPsi = NULL, gamma = NULL, covcov = NULL)

Arguments

beta Regression coefficient matrix among factors

corPsi Factor or indicator residual correlations.

totalVarPsi Factor or indicator total variances. The default is that all factor or indicator total
variances are 1.

gamma Regression coefficient matrix from covariates (column) to factors (rows)

covcov A covariance matrix among covariates

Value

A vector of factor (indicator) residual variances

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)
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See Also

• findIndIntercept to find indicator (measurement) intercepts

• findIndMean to find indicator (measurement) total means

• findIndResidualVar to find indicator (measurement) residual variances

• findIndTotalVar to find indicator (measurement) total variances

• findFactorIntercept to find factor intercepts

• findFactorMean to find factor means

• findFactorTotalVar to find factor total variances

• findFactorTotalCov to find factor covariances

Examples

path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- 0.6
path[5, 2] <- path[8, 5] <- 0.6
path[6, 3] <- path[9, 6] <- 0.6
path[5, 1] <- path[8, 4] <- 0.4
path[6, 2] <- path[9, 5] <- 0.4
facCor <- diag(9)
facCor[1, 2] <- facCor[2, 1] <- 0.4
facCor[1, 3] <- facCor[3, 1] <- 0.4
facCor[2, 3] <- facCor[3, 2] <- 0.4
totalVar <- rep(1, 9)
findFactorResidualVar(path, facCor, totalVar)

findFactorTotalCov Find factor total covariance from regression coefficient matrix, factor
residual covariance

Description

Find factor total covariances from regression coefficient matrix, factor residual covariance matrix.
The residual covaraince matrix might be derived from factor residual correlation, total variance, and
error variance. This function can be applied for path analysis model as well.

Usage

findFactorTotalCov(beta, psi = NULL, corPsi = NULL, totalVarPsi = NULL,
errorVarPsi = NULL, gamma = NULL, covcov = NULL)
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Arguments

beta Regression coefficient matrix among factors

psi Factor or indicator residual covariances. This argument can be skipped if factor
residual correlation and either total variances or error variances are specified.

corPsi Factor or indicator residual correlation. This argument must be specified with
total variances or error variances.

totalVarPsi Factor or indicator total variances.

errorVarPsi Factor or indicator residual variances.

gamma Regression coefficient matrix from covariates (column) to factors (rows)

covcov A covariance matrix among covariates

Value

A matrix of factor (model-implied) total covariance

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• findIndIntercept to find indicator (measurement) intercepts

• findIndMean to find indicator (measurement) total means

• findIndResidualVar to find indicator (measurement) residual variances

• findIndTotalVar to find indicator (measurement) total variances

• findFactorIntercept to find factor intercepts

• findFactorMean to find factor means

• findFactorResidualVar to find factor residual variances

• findFactorTotalVar to find factor total variances

Examples

path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- 0.6
path[5, 2] <- path[8, 5] <- 0.6
path[6, 3] <- path[9, 6] <- 0.6
path[5, 1] <- path[8, 4] <- 0.4
path[6, 2] <- path[9, 5] <- 0.4
facCor <- diag(9)
facCor[1, 2] <- facCor[2, 1] <- 0.4
facCor[1, 3] <- facCor[3, 1] <- 0.4
facCor[2, 3] <- facCor[3, 2] <- 0.4
residualVar <- c(1, 1, 1, 0.64, 0.288, 0.288, 0.64, 0.29568, 0.21888)
findFactorTotalCov(path, corPsi=facCor, errorVarPsi=residualVar)
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findFactorTotalVar Find factor total variances from regression coefficient matrix, factor
(residual) correlations, and factor residual variances

Description

Find factor total variances from regression coefficient matrix, factor (residual) correlation matrix,
and factor residual variances for latent variable models. In the path analysis model, this function
will find indicator total variances from regression coefficient, indicator (residual) correlation matrix,
and indicator residual variances.

Usage

findFactorTotalVar(beta, corPsi, residualVarPsi, gamma = NULL, covcov = NULL)

Arguments

beta Regression coefficient matrix among factors

corPsi Factor or indicator residual correlations.

residualVarPsi Factor or indicator residual variances.

gamma Regression coefficient matrix from covariates (column) to factors (rows)

covcov A covariance matrix among covariates

Value

A vector of factor (indicator) total variances

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• findIndIntercept to find indicator (measurement) intercepts

• findIndMean to find indicator (measurement) total means

• findIndResidualVar to find indicator (measurement) residual variances

• findIndTotalVar to find indicator (measurement) total variances

• findFactorIntercept to find factor intercepts

• findFactorMean to find factor means

• findFactorResidualVar to find factor residual variances

• findFactorTotalCov to find factor covariances
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Examples

path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- 0.6
path[5, 2] <- path[8, 5] <- 0.6
path[6, 3] <- path[9, 6] <- 0.6
path[5, 1] <- path[8, 4] <- 0.4
path[6, 2] <- path[9, 5] <- 0.4
facCor <- diag(9)
facCor[1, 2] <- facCor[2, 1] <- 0.4
facCor[1, 3] <- facCor[3, 1] <- 0.4
facCor[2, 3] <- facCor[3, 2] <- 0.4
residualVar <- c(1, 1, 1, 0.64, 0.288, 0.288, 0.64, 0.29568, 0.21888)
findFactorTotalVar(path, facCor, residualVar)

findIndIntercept Find indicator intercepts from factor loading matrix, total factor
mean, and indicator mean.

Description

Find indicator (measurement) intercepts from a factor loading matrix, total factor mean, and indi-
cator mean.

Usage

findIndIntercept(lambda, factorMean = NULL, indicatorMean = NULL,
kappa = NULL, covmean = NULL)

Arguments

lambda Factor loading matrix

factorMean Total (model-implied) mean of factors. As a default, all total factor means are 0.

indicatorMean Total indicator means. As a default, all total indicator means are 0.

kappa Regression coefficient matrix from covariates (column) to indicators (rows)

covmean A vector of covariate means.

Value

A vector of indicator (measurement) intercepts.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)
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See Also

• findIndMean to find indicator (measurement) total means

• findIndResidualVar to find indicator (measurement) residual variances

• findIndTotalVar to find indicator (measurement) total variances

• findFactorIntercept to find factor intercepts

• findFactorMean to find factor means

• findFactorResidualVar to find factor residual variances

• findFactorTotalVar to find factor total variances

• findFactorTotalCov to find factor covariances

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- c(0.6, 0.7, 0.8)
loading[4:6, 2] <- c(0.6, 0.7, 0.8)
facMean <- c(0.5, 0.2)
indMean <- rep(1, 6)
findIndIntercept(loading, facMean, indMean)

findIndMean Find indicator total means from factor loading matrix, total factor
mean, and indicator intercept.

Description

Find indicator total means from a factor loading matrix, total factor means, and indicator (measure-
ment) intercepts.

Usage

findIndMean(lambda, factorMean = NULL, tau = NULL, kappa = NULL,
covmean = NULL)

Arguments

lambda Factor loading matrix

factorMean Total (model-implied) mean of factors. As a default, all total factor means are 0.

tau Indicator (measurement) intercepts. As a default, all intercepts are 0.

kappa Regression coefficient matrix from covariates (column) to indicators (rows)

covmean A vector of covariate means.

Value

A vector of indicator total means.



findIndResidualVar 37

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• findIndIntercept to find indicator (measurement) intercepts

• findIndResidualVar to find indicator (measurement) residual variances

• findIndTotalVar to find indicator (measurement) total variances

• findFactorIntercept to find factor intercepts

• findFactorMean to find factor means

• findFactorResidualVar to find factor residual variances

• findFactorTotalVar to find factor total variances

• findFactorTotalCov to find factor covariances

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- c(0.6, 0.7, 0.8)
loading[4:6, 2] <- c(0.6, 0.7, 0.8)
facMean <- c(0.5, 0.2)
intcept <- rep(0, 6)
findIndMean(loading, facMean, intcept)

findIndResidualVar Find indicator residual variances from factor loading matrix, total fac-
tor covariance, and total indicator variances.

Description

Find indicator (measurement) residual variances from a factor loading matrix, total factor covari-
ance matrix, and total indicator variances.

Usage

findIndResidualVar(lambda, totalFactorCov, totalVarTheta = NULL,
kappa = NULL, covcov = NULL)

Arguments

lambda Factor loading matrix

totalFactorCov Total (model-implied) covariance matrix among factors.

totalVarTheta Indicator total variances. As a default, all total variances are 1.

kappa Regression coefficient matrix from covariates (column) to indicators (rows)

covcov A covariance matrix among covariates
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Value

A vector of indicator residual variances.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• findIndIntercept to find indicator (measurement) intercepts

• findIndMean to find indicator (measurement) total means

• findIndTotalVar to find indicator (measurement) total variances

• findFactorIntercept to find factor intercepts

• findFactorMean to find factor means

• findFactorResidualVar to find factor residual variances

• findFactorTotalVar to find factor total variances

• findFactorTotalCov to find factor covariances

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- c(0.6, 0.7, 0.8)
loading[4:6, 2] <- c(0.6, 0.7, 0.8)
facCov <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
totalVar <- rep(1, 6)
findIndResidualVar(loading, facCov, totalVar)

findIndTotalVar Find indicator total variances from factor loading matrix, total factor
covariance, and indicator residual variances.

Description

Find indicator total variances from a factor loading matrix, total factor covariance matrix, and indi-
cator (measurement) residual variances.

Usage

findIndTotalVar(lambda, totalFactorCov, residualVarTheta, kappa = NULL,
covcov = NULL)
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Arguments

lambda Factor loading matrix

totalFactorCov Total (model-implied) covariance matrix among factors.

residualVarTheta

Indicator (measurement) residual variances.

kappa Regression coefficient matrix from covariates (column) to indicators (rows)

covcov A covariance matrix among covariates

Value

A vector of indicator total variances.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• findIndIntercept to find indicator (measurement) intercepts

• findIndMean to find indicator (measurement) total means

• findIndResidualVar to find indicator (measurement) residual variances

• findFactorIntercept to find factor intercepts

• findFactorMean to find factor means

• findFactorResidualVar to find factor residual variances

• findFactorTotalVar to find factor total variances

• findFactorTotalCov to find factor covariances

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- c(0.6, 0.7, 0.8)
loading[4:6, 2] <- c(0.6, 0.7, 0.8)
facCov <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
resVar <- c(0.64, 0.51, 0.36, 0.64, 0.51, 0.36)
findIndTotalVar(loading, facCov, resVar)
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findPossibleFactorCor Find the appropriate position for freely estimated correlation (or co-
variance) given a regression coefficient matrix

Description

Find the appropriate position for freely estimated correlation (or covariance) given a regression
coefficient matrix. The appropriate position is the pair of variables that are not causally related.

Usage

findPossibleFactorCor(beta)

Arguments

beta The regression coefficient in path analysis.

Value

The symmetric matrix containing the appropriate position for freely estimated correlation.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• findRecursiveSet to group variables regarding the position in mediation chain.

Examples

path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- NA
path[5, 2] <- path[8, 5] <- NA
path[6, 3] <- path[9, 6] <- NA
path[5, 1] <- path[8, 4] <- NA
path[6, 2] <- path[9, 5] <- NA
findPossibleFactorCor(path)
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findPower Find a value of independent variables that provides a given value of
power.

Description

Find a value of independent variable that provides a given value of power. If there are more than
one varying parameters, this function will find the value of the target varying parameters given the
values of the other varying parameters.

Usage

findPower(powerTable, iv, power)

Arguments

powerTable A data.frame providing varying parameters and powers of each parameter.
This table is obtained by getPower or continuousPower function.

iv The target varying parameter that users would like to find the value providing
a given power from. This argument can be specified as the index of the target
column or the name of target column (i.e., "iv.N" or "N")

power A desired power.

Value

There are five possible types of values provided:

• Value The varying parameter value that provides the power just over the specified power value
(the adjacent value of varying parameter provides lower power than the specified power value).

• Minimum value The minimum value has already provided enough power (way over the spec-
ified power value). The value of varying parameters that provides exact desired power may
be lower than the minimum value. The example of varying parameter that can provides the
minimum value is sample size.

• Maximum value The maximum value has already provided enough power (way over the spec-
ified power value). The value of varying parameters that provides exact desired power may
be higher than the maximum value. The example of varying parameter that can provides the
maximum value is percent missing.

• NA There is no value in the domain of varying parameters that provides the power greater than
the desired power.

• Inf The power of all values in the varying parameters is 1 (specifically more than 0.9999) and
any values of the varying parameters can be picked and still provide enough power.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)
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See Also

• getPower to find the power of parameter estimates

• continuousPower to find the power of parameter estimates for the result object (linkS4class{SimResult})
with varying parameters.

Examples

## Not run:
# Specify Sample Size by n
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.4)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# Specify both sample size and percent missing completely at random. Note that more fine-grained
# values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1) and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, model=CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))

# Find the power of all possible combination of N and pmMCAR
pow <- getPower(Output)

# Find the sample size that provides the power of 0.8
findPower(pow, "N", 0.80)

## End(Not run)

findRecursiveSet Group variables regarding the position in mediation chain

Description

In mediation analysis, variables affects other variables as a chain. This function will group variables
regarding the chain of mediation analysis.

Usage

findRecursiveSet(beta)

Arguments

beta The regression coefficient in path analysis.

Value

The list of set of variables in the mediation chain. The variables in position 1 will be the independent
variables. The variables in the last variables will be the end of the chain.
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• findPossibleFactorCor to find the possible position for latent correlation given a regression
coefficient matrix

Examples

path <- matrix(0, 9, 9)
path[4, 1] <- path[7, 4] <- NA
path[5, 2] <- path[8, 5] <- NA
path[6, 3] <- path[9, 6] <- NA
path[5, 1] <- path[8, 4] <- NA
path[6, 2] <- path[9, 5] <- NA
findRecursiveSet(path)

generate Generate data using SimSem template

Description

This function can be used to generate random data based on the 1. SimSem objects created with the
model function, 2. lavaan script or parameter tables, or 3. an MxModel object from the OpenMx
package. Some notable features include fine control of misspecification and misspecification opti-
mization (for SimSem only), as well as the ability to generate non-normal data. When using simsem
for simulations, this function is used internally to generate data in the function sim, and can be
helpful for debugging, or in creating data for use with other analysis programs.

Usage

generate(model, n, maxDraw=50, misfitBounds=NULL, misfitType="f0",
averageNumMisspec=FALSE, optMisfit=NULL, optDraws=50,
createOrder = c(1, 2, 3), indDist=NULL, sequential=FALSE,
facDist=NULL, errorDist=NULL, saveLatentVar = FALSE, indLab=NULL,
modelBoot=FALSE, realData=NULL, covData=NULL, params=FALSE, group = NULL,
empirical = FALSE, ...)

Arguments

model A SimSem object, a lavaan script or parameter tables, or an MxModel object from
the OpenMx package

n Integer of sample size.

maxDraw Integer specifying the maximum number of attempts to draw a valid set of pa-
rameters (no negative error variance, standardized coefficients over 1).
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misfitBounds Vector that contains upper and lower bounds of the misfit measure. Sets of
parameters drawn that are not within these bounds are rejected.

misfitType Character vector indicating the fit measure used to assess the misfit of a set of
parameters. Can be "f0", "rmsea", "srmr", or "all".

averageNumMisspec

If TRUE, the provided fit will be divided by the number of misspecified parame-
ters.

optMisfit Character vector of either "min" or "max" indicating either maximum or mini-
mum optimized misfit. If not null, the set of parameters out of the number of
draws in "optDraws" that has either the maximum or minimum misfit of the
given misfit type will be returned.

optDraws Number of parameter sets to draw if optMisfit is not null. The set of parameters
with the maximum or minimum misfit will be returned.

createOrder The order of 1) applying equality/inequality constraints, 2) applying misspeci-
fication, and 3) fill unspecified parameters (e.g., residual variances when total
variances are specified). The specification of this argument is a vector of dif-
ferent orders of 1 (constraint), 2 (misspecification), and 3 (filling parameters).
For example, c(1, 2, 3) is to apply constraints first, then add the misspecifica-
tion, and finally fill all parameters. See the example of how to use it in the draw
function.

indDist A SimDataDist object or list of objects for a distribution of indicators. If
one object is passed, each indicator will have the same distribution. Use when
sequential is FALSE.

sequential If TRUE, use a sequential method to create data such that the data from factor
are generated first and apply to a set of equations to obtain the data of indica-
tors. If FALSE, create data directly from model-implied mean and covariance of
indicators.

facDist A SimDataDist object or list of objects for the distribution of factors. If one ob-
ject is passed, all factors will have the same distribution. Use when sequential
is TRUE.

errorDist An object or list of objects of type SimDataDist indicating the distribution of
errors. If a single SimDataDist is specified, each error will be genrated with
that distribution.

saveLatentVar If TRUE, the total latent variable scores, residual latent variable scores, and mea-
surement error scores are also provided as the "latentVar" attribute of the gen-
erated data by the following line: attr(generatedData, "latentVar"). The
sequential argument must be TRUE in order to use this option.

indLab A vector of indicator labels. When not specified, the variable names are x1, x2,
... xN.

modelBoot When specified, a model-based bootstrap is used for data generation. See de-
tails for further information. This argument requires real data to be passed to
realData.

realData A data.frame containing real data. The data generated will follow the distribu-
tion of this data set.
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covData A data.frame containing covariate data, which can have any distributions. This
argument is required when users specify GA or KA matrices in the model template
(SimSem).

params If TRUE, return the parameters drawn along with the generated data set. Default
is FALSE.

group The label of the grouping variable

empirical Logical. If TRUE, the specified parameters are treated as sample statistics and
data are created to get the specified sample statistics. This argument is applicable
when multivariate normal distribution is specified only.

... Additional arguments for the simulateData function.

Details

If the lavaan script or the MxModel are provided, the model-implied covariance matrix will be
computed and internally use createData function to generate data. The data-generation method
is based on whether the indDist argument is specified. For the lavaan script, the code for data
generation is modified from the simulateData function.

If the SimSem object is specified, it will check whether there are any random parameters or trivial
misspecification in the model. If so, real or misspecified parameters are drawn via the draw function.
Next, there are two methods to generate data. First, the function will calculate the model-implied
covariance matrix (including model misspecification) and generate data similar to the lavaan script
or the MxModel object. The second method is referred to as the sequential method, which can be
used by specifying the sequential argument as TRUE. This function will create data based on the
chain of equations in structural equation modeling such that independent variables and errors are
generated and added as dependent variables and the dependent variables will be treated as indepen-
dent variables in the next equation. For example, in the model with factor A and B are independent
variables, factor C are dependent variables, factors A and B are generated first. Then, residual in
factor C are created and added with factors A and B. This current step has all factor scores. Then,
measurement errors are created and added with factor scores to create indicator scores. During
each step, independent variables and errors can be nonnormal by setting facDist or errorDist
arguments. The data generation in each step is based on the createData function.

For the model-based bootstrap (providing the realData argument), the transformation proposed by
Yung & Bentler (1996) is used. This procedure is the expansion from the Bollen and Stine (1992)
bootstrap including a mean structure. The model-implied mean vector and covariance matrix with
trivial misspecification will be used in the model-based bootstrap if misspec is specified. See page
133 of Bollen and Stine (1992) for a reference.

Value

A data.frame containing simulated data from the data generation template. A variable "group" is
appended indicating group membership.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>), Patrick Miller (University of Notre Dame;
<pmille13@nd.edu>), the data generation code for lavaan script is modifed from the simulateData
function in lavaan written by Yves Rosseel
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References

Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation
models. Sociological Methods and Research, 21, 205-229.

Yung, Y.-F., & Bentler, P. M. (1996). Bootstrapping techniques in analysis of mean and covari-
ance structures. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation
modeling: Issues and techniques (pp. 195-226). Mahwah, NJ: Erlbaum.

See Also

• draw To draw parameters using the SimSem template.

• createData To generate random data using a set of parameters from draw

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")

dat <- generate(CFA.Model, 200)

# Get the latent variable scores

dat2 <- generate(CFA.Model, 20, sequential = TRUE, saveLatentVar = TRUE)
dat2
attr(dat2, "latentVar")

getCIwidth Find confidence interval width

Description

Find the median of confidence interval width or a confidence interval value given a degree of assur-
ance (Lai & Kelley, 2011)

Usage

getCIwidth(object, assurance = 0.50, nVal = NULL, pmMCARval = NULL,
pmMARval = NULL, df = 0)
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Arguments

object SimResult that saves the analysis results from multiple replications

assurance The percentile of the resulting confidence interval width. When assurance is
0.50, the median of the widths is provided. See Lai & Kelley (2011) for more
details.

nVal The sample size value that researchers wish to find the confidence interval width
from. This argument is applicable for SimResult with varying sample sizes or
percent missing across replications

pmMCARval The percent missing completely at random value that researchers wish to find
the confidence interval width from. This argument is applicable for SimResult
with varying sample sizes or percent missing across replications

pmMARval The percent missing at random value that researchers wish to find the confidence
interval width from. This argument is applicable for SimResult with varying
sample sizes or percent missing across replications

df The degree of freedom used in spline method in predicting the confidence in-
terval width by the predictors. If df is 0, the spline method will not be applied.
This argument is applicable for SimResult with varying sample sizes or percent
missing across replications

Value

The median of confidence interval width or a confidence interval given a degree of assurance

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Lai, K., & Kelley, K. (2011). Accuracy in parameter estimation for targeted effects in structural
equation modeling: Sample size planning for narrow confidence intervals. Psychological Methods,
16, 127-148.

See Also

SimResult for a detail of simResult

Examples

## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
latent.cor <- matrix(NA, 2, 2)
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diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTE <- binds(error.cor)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n = 200, model=CFA.Model)

# Get the cutoff (critical value) when alpha is 0.05
getCIwidth(Output, assurance=0.80)

# Finding the cutoff when the sample size is varied. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output2 <- sim(NULL, model=CFA.Model, n=seq(50, 100, 10))

# Get the fit index cutoff when sample size is 75.
getCIwidth(Output2, assurance=0.80, nVal = 75)

## End(Not run)

getCoverage Find coverage rate of model parameters

Description

A function to find the coverage rate of confidence intervals in a model when none, one, or more of
the simulations parameters vary randomly across replications.

Usage

getCoverage(simResult, coverValue = NULL, contParam = NULL, coverParam = NULL,
nVal = NULL, pmMCARval = NULL, pmMARval = NULL, paramVal = NULL)

Arguments

simResult SimResult that may include randomly varying parameters (e.g. sample size,
percent missing, model parameters)

coverValue A target value used that users wish to find the coverage rate of that value (e.g.,
0). If NULL, the parameter values will be used.

contParam Vector of parameters names that vary over replications.

coverParam Vector of parameters names that the user wishes to find coverage rate for. This
can be a vector of names (e.g., "f1=~y2", "f1~~f2"). If parameters are not spec-
ified, coverage rates for all parameters in the model will be returned.

nVal The sample size values that users wish to find power from.
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pmMCARval The percent completely missing at random values that users wish to find power
from.

pmMARval The percent missing at random values that users wish to find power from.

paramVal A list of varying parameter values that users wish to find power from.

Details

In this function, the coverage (which can be 0 or 1) is regressed on randomly varying simulation
parameters (e.g., sample size, percentage of missing data, or model parameters) using logistic re-
gression. For a set of independent variables values, the predicted probability from the logistic
regression equation is the predicted coverage rate.

Value

Data frame containing columns representing values of the randomly varying simulation parameters,
and coverage rates for model parameters of interest.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>), Alexander M. Schoemann (East Carolina
University; <schoemanna@ecu.edu>)

See Also

• SimResult to see how to create a simResult object with randomly varying parameters.

Examples

## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# Specify both sample size and percent missing completely at random. Note that more fine-grained
# values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1) and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, model=CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))
summary(Output)

# Get the coverage rates of all possible combinations of n and pmMCAR
getCoverage(Output)

# Get the coverage rates of the combinations of n of 100 and 200 and pmMCAR of 0, 0.1, and 0.2
getCoverage(Output, coverValue = 0, nVal=c(100, 200), pmMCARval=c(0, 0.1, 0.2))

## End(Not run)
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getCutoff Find fit indices cutoff given a priori alpha level

Description

Extract fit indices information from the SimResult and get the cutoffs of fit indices given a priori
alpha level

Usage

getCutoff(object, alpha, revDirec = FALSE, usedFit = NULL, nVal = NULL,
pmMCARval = NULL, pmMARval = NULL, df = 0)

Arguments

object SimResult that saves the analysis results from multiple replications

alpha A priori alpha level

revDirec The default is to find criticl point on the side that indicates worse fit (the right
side of RMSEA or the left side of CFI). If specifying as TRUE, the directions are
reversed.

usedFit Vector of names of fit indices that researchers wish to getCutoffs from. The
default is to getCutoffs of all fit indices.

nVal The sample size value that researchers wish to find the fit indices cutoffs from.
This argument is applicable for SimResult with varying sample sizes or percent
missing across replications

pmMCARval The percent missing completely at random value that researchers wish to find
the fit indices cutoffs from. This argument is applicable for SimResult with
varying sample sizes or percent missing across replications

pmMARval The percent missing at random value that researchers wish to find the fit indices
cutoffs from. This argument is applicable for SimResult with varying sample
sizes or percent missing across replications

df The degree of freedom used in spline method in predicting the fit indices by the
predictors. If df is 0, the spline method will not be applied. This argument is
applicable for SimResult with varying sample sizes or percent missing across
replications

Value

One-tailed cutoffs of several fit indices with a priori alpha level

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)



getCutoffNested 51

See Also

SimResult for a detail of simResult

Examples

## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTE <- binds(error.cor)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n = 200, model=CFA.Model)

# Get the cutoff (critical value) when alpha is 0.05
getCutoff(Output, 0.05)

# Finding the cutoff when the sample size is varied. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output2 <- sim(NULL, model=CFA.Model, n=seq(50, 100, 10))

# Get the fit index cutoff when sample size is 75.
getCutoff(Output2, 0.05, nVal = 75)

## End(Not run)

getCutoffNested Find fit indices cutoff for nested model comparison given a priori al-
pha level

Description

Extract fit indices information from the simulation of parent and nested models and getCutoff of fit
indices given a priori alpha level

Usage

getCutoffNested(nested, parent, alpha = 0.05, usedFit = NULL, nVal = NULL,
pmMCARval = NULL, pmMARval = NULL, df = 0)
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Arguments

nested SimResult that saves the analysis results of nested model from multiple repli-
cations

parent SimResult that saves the analysis results of parent model from multiple repli-
cations

alpha A priori alpha level

usedFit Vector of names of fit indices that researchers wish to getCutoffs from. The
default is to getCutoffs of all fit indices.

nVal The sample size value that researchers wish to find the fit indices cutoffs from.

pmMCARval The percent missing completely at random value that researchers wish to find
the fit indices cutoffs from.

pmMARval The percent missing at random value that researchers wish to find the fit indices
cutoffs from.

df The degree of freedom used in spline method in predicting the fit indices by the
predictors. If df is 0, the spline method will not be applied.

Value

One-tailed cutoffs of several fit indices with a priori alpha level

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

SimResult for a detail of simResult getCutoff for a detail of finding cutoffs for absolute fit

Examples

## Not run:
# Nested Model
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))

error.cor.mis <- matrix("rnorm(1, 0, 0.1)", 6, 6)
diag(error.cor.mis) <- 1
RTE <- binds(diag(6), misspec=error.cor.mis)
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")

# Parent Model
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
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diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, "runif(1, 0.7, 0.9)")
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")

# The actual number of replications should be greater than 10.
Output.NULL.NULL <- sim(10, n=500, model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.NULL.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.NULL)

# Find the fix index cutoff from the sampling distribution of the difference
# in fit index of nested models where the alpha is 0.05.
getCutoffNested(Output.NULL.NULL, Output.NULL.ALT, alpha=0.05)

## End(Not run)

getCutoffNonNested Find fit indices cutoff for non-nested model comparison given a priori
alpha level

Description

Extract fit indices information from the simulation of two models fitting on the datasets created
from both models and getCutoff of fit indices given a priori alpha level

Usage

getCutoffNonNested(dat1Mod1, dat1Mod2, dat2Mod1=NULL, dat2Mod2=NULL,
alpha=.05, usedFit=NULL, onetailed=FALSE, nVal = NULL, pmMCARval = NULL,
pmMARval = NULL, df = 0)

Arguments

dat1Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created
from Model 1

dat1Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created
from Model 1

dat2Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created
from Model 2

dat2Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created
from Model 2

alpha A priori alpha level

usedFit Vector of names of fit indices that researchers wish to get cutoffs from. The
default is to get cutoffs of all fit indices.

onetailed If TRUE, the function will find the cutoff from one-tail test. If FALSE, the funciton
will find the cutoff from two-tailed test.

nVal The sample size value that researchers wish to find the fit indices cutoffs from.
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pmMCARval The percent missing completely at random value that researchers wish to find
the fit indices cutoffs from.

pmMARval The percent missing at random value that researchers wish to find the fit indices
cutoffs from.

df The degree of freedom used in spline method in predicting the fit indices by the
predictors. If df is 0, the spline method will not be applied.

Value

One- or two-tailed cutoffs of several fit indices with a priori alpha level. The cutoff is based on the
fit indices from Model 1 subtracted by the fit indices from Model 2.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

SimResult for a detail of simResult getCutoff for a detail of finding cutoffs for absolute fit
getCutoffNested for a detail of finding cutoffs for nested model comparison plotCutoffNonNested
Plot cutoffs for non-nested model comparison

Examples

## Not run:
# Model A: Factor 1 with items 1-3 and Factor 2 with items 4-8
loading.A <- matrix(0, 8, 2)
loading.A[1:3, 1] <- NA
loading.A[4:8, 2] <- NA
LY.A <- bind(loading.A, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, "runif(1, 0.7, 0.9)")
RTE <- binds(diag(8))
CFA.Model.A <- model(LY = LY.A, RPS = RPS, RTE = RTE, modelType="CFA")

# Model B: Factor 1 with items 1-4 and Factor 2 with items 5-8
loading.B <- matrix(0, 8, 2)
loading.B[1:4, 1] <- NA
loading.B[5:8, 2] <- NA
LY.B <- bind(loading.B, 0.7)
CFA.Model.B <- model(LY = LY.B, RPS = RPS, RTE = RTE, modelType="CFA")

# The actual number of replications should be greater than 10.
Output.A.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.A)
Output.A.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.A)
Output.B.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.B)
Output.B.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.B)

# Find the cutoffs from the sampling distribution to reject model A (model 1)
# and to reject model B (model 2)
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getCutoffNonNested(Output.A.A, Output.A.B, Output.B.A, Output.B.B)

# Find the cutoffs from the sampling distribution to reject model A (model 1)
getCutoffNonNested(Output.A.A, Output.A.B)

# Find the cutoffs from the sampling distribution to reject model B (model 1)
getCutoffNonNested(Output.B.B, Output.B.A)

## End(Not run)

getExtraOutput Get extra outputs from the result of simulation

Description

Get extra outputs from a simulation result object (SimResult). Users can ask this package to
extra output from the lavaan object in each iteration by setting the outfun argument (in the sim
function). See the example below.

Usage

getExtraOutput(object, improper = TRUE, nonconverged = FALSE)

Arguments

object SimResult that have the extra output extracted by the function defined in the
outfun argument (in the sim function)

improper Specify whether to include the information from the replications with improper
solutions

nonconverged Specify whether to include the information from the nonconvergent replications

Value

A list of extra outputs

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• sim A function to run a Monte Carlo simulation
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Examples

## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# Write a function to extract the modification index from lavaan object
outfun <- function(out) {
result <- inspect(out, "mi")

}

# We will use only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=200, model=CFA.Model, outfun=outfun)

# Get the modification index of each replication
getExtraOutput(Output)

## End(Not run)

getPopulation Extract the data generation population model underlying a result ob-
ject

Description

This function will extract the data generation population model underlying a result object (linkS4class{SimResult}).

Usage

getPopulation(object, std = FALSE, improper = TRUE, nonconverged = FALSE)

Arguments

object The result object that you wish to extract the data generation population model
from (linkS4class{SimResult}).

std If TRUE, standardized parameters are returned.

improper Specify whether to include the information from the replications with improper
solutions

nonconverged Specify whether to include the information from the nonconvergent replications

Value

A data frame contained the population of each replication
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult for result object

Examples

## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, "runif(1, 0.4, 0.9)")
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# We will use only 10 replications to save time.
# In reality, more replications are needed.
Output <- sim(10, n=200, model=CFA.Model)

# Get the population parameters
getPopulation(Output)

## End(Not run)

getPower Find power of model parameters

Description

A function to find the power of parameters in a model when none, one, or more of the simulations
parameters vary randomly across replications.

Usage

getPower(simResult, alpha = 0.05, contParam = NULL, powerParam = NULL,
nVal = NULL, pmMCARval = NULL, pmMARval = NULL, paramVal = NULL)

Arguments

simResult SimResult that may include randomly varying parameters (e.g. sample size,
percent missing, model parameters)

alpha Alpha level to use for power analysis.

contParam Vector of parameters names that vary over replications.

powerParam Vector of parameters names that the user wishes to find power for. This can be
a vector of names (e.g., "f1=~y2", "f1~~f2"). If parameters are not specified,
power for all parameters in the model will be returned.
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nVal The sample size values that users wish to find power from.

pmMCARval The percent completely missing at random values that users wish to find power
from.

pmMARval The percent missing at random values that users wish to find power from.

paramVal A list of varying parameter values that users wish to find power from.

Details

A common use of simulations is to conduct power analyses, especially when using SEM (Muthen &
Muthen, 2002). Here, researchers could select values for each parameter and a sample size and run
a simulation to determine power in those conditions (the proportion of generated datasets in which
a particular parameter of interest is significantly different from zero). To evaluate power at multiple
sample sizes, one simulation for each sample size must be run. This function not only calculate
power for each sample size but also calculate power for multiple sample sizes varying continuously.
By continuously varying sample size across replications, only a single simulation is needed. In
this simulation, the sample size for each replication varies randomly across plausible sample sizes
(e.g., sample sizes between 200 and 500). For each replication, the sample size and significance of
each parameter (0 = not significant, 1 = significant) are recorded. When the simulation is complete,
parameter significance is regressed on sample size using logistic regression. For a given sample
size, the predicted probability from the logistic regression equation is the power to detect an effect
at that sample size. This approach can be extended to other randomly varying simulation parameters
such as the percentage of missing data, and model parameters.

Value

Data frame containing columns representing values of the randomly varying simulation parameters,
and power for model parameters of interest.

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>), Sunthud Porn-
prasertmanit (<psunthud@gmail.com>)

References

Muthen, L. K., & Muthen, B. O. (2002). How to use a Monte Carlo study to decide on sample size
and determine power. Structural Equation Modeling, 4, 599-620.

See Also

• SimResult to see how to create a simResult object with randomly varying parameters.

Examples

## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
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RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# Specify both sample size and percent missing completely at random. Note that more fine-grained
# values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1) and pmMCAR=seq(0, 0.2, 0.01)
Output <- sim(NULL, model=CFA.Model, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2))
summary(Output)

# Get the power of all possible combinations of n and pmMCAR
getPower(Output)

# Get the power of the combinations of n of 100 and 200 and pmMCAR of 0, 0.1, and 0.2
getPower(Output, nVal=c(100, 200), pmMCARval=c(0, 0.1, 0.2))

## End(Not run)

getPowerFit Find power in rejecting alternative models based on fit indices criteria

Description

Find the proportion of fit indices that indicate worse fit than a specified cutoffs. The cutoffs may be
calculated from getCutoff of the null model.

Usage

getPowerFit(altObject, cutoff = NULL, nullObject = NULL, revDirec = FALSE,
usedFit = NULL, alpha = 0.05, nVal = NULL, pmMCARval = NULL, pmMARval = NULL,
condCutoff = TRUE, df = 0)

Arguments

altObject SimResult that indicates alternative model that users wish to reject

cutoff Fit indices cutoffs from null model or users. This should be a vector with a
specified fit indices names as the name of vector elements. The cutoff cannot
be specified if the nullObject is specified.

nullObject The SimResult that contains the simulation result from fitting the null model by
the data from the null model. The nullObject cannot be specified if the cutoff
is specified.

revDirec Reverse the direction of deciding a power by fit indices (e.g., less than –> greater
than). The default is to count the proportion of fit indices that indicates lower fit
to the model, such as how many RMSEA in the alternative model that is worse
than cutoffs. The direction can be reversed by setting as TRUE.

usedFit The vector of names of fit indices that researchers wish to get powers from. The
default is to get powers of all fit indices

alpha The alpha level used to find the cutoff if the nullObject is specified. This
argument is not applicable if the cutoff is specified.
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nVal The sample size value that researchers wish to find the power from. This argu-
ment is applicable when altObject has a random sample size.

pmMCARval The percent missing completely at random value that researchers wish to find
the power from. This argument is applicable when altObject has a random
percent missing completely at random.

pmMARval The percent missing at random value that researchers wish to find the power
from. This argument is applicable when altObject has a random percent miss-
ing at random.

condCutoff A logical value to use a conditional quantile method (if TRUE) or logistic re-
gression method (if FALSE) to find the power. The conditional quantile method
use quantile regression to find the quantile of the cutoff on the alternative sam-
pling distribution that varies nVal, pmMCARval, or pmMARval. The value of 1 -
quantile will be reported as the power given the set of nVal, pmMCARval, and
pmMARval. The logistic regression method is based on transforming the fit in-
dices value to reject/retain decision first. Then, the logistic regression is used to
predict reject/retain decision given the set of nVal, pmMCARval, and pmMARval.
The predicted probability is reported as a power. This argument is applicable for
specification of cutoff only.

df The degree of freedom used in spline method in quantile regression (condCutoff
= TRUE). If df is 0, which is the default, the spline method will not be applied.

Value

List of power given different fit indices. The TraditionalChi means the proportion of replications
that are rejected by the traditional chi-square test.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• getCutoff to find the cutoffs from null model.

• SimResult to see how to create simResult

Examples

## Not run:
# Null model with one factor
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")

# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output.NULL <- sim(5, n=500, model=CFA.Model.NULL)
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# Get the fit index cutoff from the null model
Cut.NULL <- getCutoff(Output.NULL, 0.05)

# Alternative model with two factor
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, "runif(1, 0.7, 0.9)")
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")

# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output.ALT <- sim(5, n=500, model=CFA.Model.NULL, generate=CFA.Model.ALT)

# Get the power based on the derived cutoff
getPowerFit(Output.ALT, cutoff=Cut.NULL)

# Get the power based on the rule of thumb proposed by Hu & Bentler (1999)
Rule.of.thumb <- c(RMSEA=0.05, CFI=0.95, TLI=0.95, SRMR=0.06)
getPowerFit(Output.ALT, cutoff=Rule.of.thumb, usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))

# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output.NULL2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.NULL, generate=CFA.Model.ALT)

# Get the power based on the derived cutoff from the null model at the sample size of 250
getPowerFit(Output.ALT2, nullObject=Output.NULL2, nVal=250)

## End(Not run)

getPowerFitNested Find power in rejecting nested models based on the differences in fit
indices

Description

Find the proportion of the difference in fit indices that indicate worse fit than a specified (or inter-
nally derived) cutoffs.

Usage

getPowerFitNested(altNested, altParent, cutoff = NULL, nullNested = NULL,
nullParent = NULL, revDirec = FALSE, usedFit = NULL, alpha = 0.05, nVal = NULL,
pmMCARval = NULL, pmMARval = NULL, condCutoff = TRUE, df = 0)
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Arguments

altNested SimResult that saves the simulation result of the nested model when the nested
model is FALSE.

altParent SimResult that saves the simulation result of the parent model when the nested
model is FALSE.

cutoff A vector of priori cutoffs for fit indices. The cutoff cannot be specified if the
nullNested and nullParent are specified.

nullNested The SimResult that saves the simulation result of the nested model when the
nested model is TRUE. This argument must be specified with nullParent. The
nullNested cannot be specified if the cutoff is specified.

nullParent The SimResult that saves the simulation result of the parent model when the
nested model is TRUE. This argument must be specified with nullNested. The
nullNested cannot be specified if the cutoff is specified.

revDirec Reverse the direction of deciding a power by fit indices (e.g., less than –> greater
than). The default is to count the proportion of fit indices that indicates lower fit
to the model, such as how many RMSEA in the alternative model that is worse
than cutoffs. The direction can be reversed by setting as TRUE.

usedFit The vector of names of fit indices that researchers wish to get powers from. The
default is to get powers of all fit indices

alpha The alpha level used to find the cutoff if the nullObject is specified. This
argument is not applicable if the cutoff is specified.

nVal The sample size value that researchers wish to find the power from. This argu-
ment is applicable when altObject has a random sample size.

pmMCARval The percent missing completely at random value that researchers wish to find
the power from. This argument is applicable when altObject has a random
percent missing completely at random.

pmMARval The percent missing at random value that researchers wish to find the power
from. This argument is applicable when altObject has a random percent miss-
ing at random.

condCutoff A logical value to use a conditional quantile method (if TRUE) or logistic re-
gression method (if FALSE) to find the power. The conditional quantile method
use quantile regression to find the quantile of the cutoff on the alternative sam-
pling distribution that varies nVal, pmMCARval, or pmMARval. The value of 1 -
quantile will be reported as the power given the set of nVal, pmMCARval, and
pmMARval. The logistic regression method is based on transforming the fit in-
dices value to reject/retain decision first. Then, the logistic regression is used to
predict reject/retain decision given the set of nVal, pmMCARval, and pmMARval.
The predicted probability is reported as a power. This argument is applicable for
specification of cutoff only.

df The degree of freedom used in spline method in quantile regression (condCutoff
= TRUE). If df is 0, which is the default, the spline method will not be applied.

Value

List of power given different fit indices. The TraditionalChi means the proportion of replications
that are rejected by the traditional chi-square difference test.
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• getCutoff to find the cutoffs from null model.

• SimResult to see how to create simResult

Examples

## Not run:
# Null model (Nested model) with one factor
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")

# Alternative model (Parent model) with two factors
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, 0.7)
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")

# We make the examples running only 10 replications to save time.
# In reality, more replications are needed.
Output.NULL.NULL <- sim(10, n=500, model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT.NULL <- sim(10, n=500, model=CFA.Model.NULL, generate=CFA.Model.ALT)
Output.NULL.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.NULL)
Output.ALT.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.ALT)

# Find the power based on the derived cutoff from the models analyzed on the null datasets
getPowerFitNested(Output.ALT.NULL, Output.ALT.ALT, nullNested=Output.NULL.NULL,
nullParent=Output.NULL.ALT)

# Find the power based on the chi-square value at df=1 and the CFI change (intentionally
# use a cutoff from Cheung and Rensvold (2002) in an appropriate situation).
getPowerFitNested(Output.ALT.NULL, Output.ALT.ALT, cutoff=c(Chi=3.84, CFI=-0.10))

# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output.NULL.NULL2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT.NULL2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.NULL, generate=CFA.Model.ALT)
Output.NULL.ALT2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.ALT, generate=CFA.Model.NULL)
Output.ALT.ALT2 <- sim(NULL, n=seq(50, 500, 50), model=CFA.Model.ALT, generate=CFA.Model.ALT)

# Get the power based on the derived cutoff from the null model at the sample size of 250
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getPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, nullNested=Output.NULL.NULL2,
nullParent=Output.NULL.ALT2, nVal = 250)

# Get the power based on the rule of thumb from the null model at the sample size of 250
getPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, cutoff=c(Chi=3.84, CFI=-0.10), nVal = 250)

## End(Not run)

getPowerFitNonNested Find power in rejecting non-nested models based on the differences in
fit indices

Description

Find the proportion of the difference in fit indices from one model that does not in the range of
sampling distribution from another model (reject that the dataset comes from the second model) or
indicates worse fit than a specified cutoff.

Usage

getPowerFitNonNested(dat2Mod1, dat2Mod2, cutoff = NULL, dat1Mod1 = NULL,
dat1Mod2 = NULL, revDirec = FALSE, usedFit = NULL, alpha = 0.05, nVal = NULL,
pmMCARval = NULL, pmMARval = NULL, condCutoff = TRUE, df = 0, onetailed = FALSE)

Arguments

dat2Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created
from Model 2

dat2Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created
from Model 2

cutoff A vector of priori cutoffs for fit indices. The cutoff cannot be specified if the
dat1Mod1 and dat1Mod2 are specified.

dat1Mod1 The SimResult that saves the simulation of analyzing Model 1 by datasets
created from Model 1. This argument must be specified with dat1Mod2. The
dat1Mod1 cannot be specified if the cutoff is specified.

dat1Mod2 The SimResult that saves the simulation of analyzing Model 2 by datasets
created from Model 1. This argument must be specified with dat1Mod1. The
dat1Mod2 cannot be specified if the cutoff is specified.

revDirec Reverse the direction of deciding a power by fit indices (e.g., less than –> greater
than). The default is to count the proportion of fit indices that indicates lower fit
to the model, such as how many RMSEA in the alternative model that is worse
than cutoffs. The direction can be reversed by setting as TRUE.

usedFit The vector of names of fit indices that researchers wish to get powers from. The
default is to get powers of all fit indices

alpha The alpha level used to find the cutoff if the nullObject is specified. This
argument is not applicable if the cutoff is specified.
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nVal The sample size value that researchers wish to find the power from. This argu-
ment is applicable when altObject has a random sample size.

pmMCARval The percent missing completely at random value that researchers wish to find
the power from. This argument is applicable when altObject has a random
percent missing completely at random.

pmMARval The percent missing at random value that researchers wish to find the power
from. This argument is applicable when altObject has a random percent miss-
ing at random.

condCutoff A logical value to use a conditional quantile method (if TRUE) or logistic re-
gression method (if FALSE) to find the power. The conditional quantile method
use quantile regression to find the quantile of the cutoff on the alternative sam-
pling distribution that varies nVal, pmMCARval, or pmMARval. The value of 1 -
quantile will be reported as the power given the set of nVal, pmMCARval, and
pmMARval. The logistic regression method is based on transforming the fit in-
dices value to reject/retain decision first. Then, the logistic regression is used to
predict reject/retain decision given the set of nVal, pmMCARval, and pmMARval.
The predicted probability is reported as a power. This argument is applicable for
specification of cutoff only.

df The degree of freedom used in spline method in quantile regression (condCutoff
= TRUE). If df is 0, which is the default, the spline method will not be applied.

onetailed Derive the cutoff by using one-tailed test if specified as TRUE. This argument is
applicable only when dat1Mod1 and dat1Mod2 are specified.

Value

List of power given different fit indices.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• getCutoffNonNested to find the cutoffs for non-nested model comparison

• SimResult to see how to create simResult

Examples

## Not run:
# Model A: Factor 1 on Items 1-3 and Factor 2 on Items 4-8
loading.A <- matrix(0, 8, 2)
loading.A[1:3, 1] <- NA
loading.A[4:8, 2] <- NA
LY.A <- bind(loading.A, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, "runif(1, 0.7, 0.9)")
RTE <- binds(diag(8))
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CFA.Model.A <- model(LY = LY.A, RPS = RPS, RTE = RTE, modelType="CFA")

# Model B: Factor 1 on Items 1-4 and Factor 2 on Items 5-8
loading.B <- matrix(0, 8, 2)
loading.B[1:4, 1] <- NA
loading.B[5:8, 2] <- NA
LY.B <- bind(loading.B, 0.7)
CFA.Model.B <- model(LY = LY.B, RPS = RPS, RTE = RTE, modelType="CFA")

# The actual number of replications should be greater than 10.
Output.A.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.A)
Output.A.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.A)
Output.B.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.B)
Output.B.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.B)

# Find the power based on the derived cutoff for both models
getPowerFitNonNested(Output.B.A, Output.B.B, dat1Mod1=Output.A.A, dat1Mod2=Output.A.B)

# Find the power based on the AIC and BIC of 0 (select model B if Output.B.B has lower AIC or BIC)
getPowerFitNonNested(Output.B.A, Output.B.B, cutoff=c(AIC=0, BIC=0))

## End(Not run)

imposeMissing Impose MAR, MCAR, planned missingness, or attrition on a data set

Description

Function imposes missing values on a data based on the known missing data types, including
MCAR, MAR, planned, and attrition.

Usage

impose(miss, data.mat, pmMCAR = NULL, pmMAR = NULL)
imposeMissing(data.mat, cov = 0, pmMCAR = 0, pmMAR = 0, nforms = 0,
itemGroups = list(), twoMethod = 0, prAttr = 0, timePoints = 1,
ignoreCols = 0, threshold = 0, logit = "", logical = NULL)

Arguments

miss Missing data object (SimMissing) used as the template for impose missing val-
ues

data.mat Data to impose missing upon. Can be either a matrix or a data frame.

cov Column indices of a covariate to be used to impose MAR missing, or MAR
attrition. Will not be included in any removal procedure. See details.

pmMCAR Decimal percent of missingness to introduce completely at random on all vari-
ables.
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pmMAR Decimal percent of missingness to introduce using the listed covariate as pre-
dictor. See details.

nforms The number of forms for planned missing data designs, not including the shared
form.

itemGroups List of lists of item groupings for planned missing data forms. Unless specified,
items will be divided into groups sequentially (e.g. 1-3,4-6,7-9,10-12)

twoMethod With missing on one variable: vector of (column index, percent missing). Will
put a given percent missing on that column in the matrix to simulate a two
method planned missing data research design. With missing on two or more
variables: list of (column indices, percent missing).

prAttr Probability (or vector of probabilities) of an entire case being removed due to
attrition at a given time point. When a covariate is specified along with this ar-
gument, attrition will be predicted by the covariate (MAR attrition). See details.

timePoints Number of timepoints items were measured over. For longitudinal data, planned
missing designs will be implemented within each timepoint. All methods to
impose missing values over time assume an equal number of variables at each
time point.

ignoreCols The columns not imposed any missing values for any missing data patterns.

threshold The threshold of the covariate used to impose missing values. Values on the
covariate above this threshold are eligible to be deleted. The default threshold is
the mean of the variable.

logit The script used for imposing missing values by logistic regression. The script
is similar to the specification of regression in lavaan such that each line begins
with a dependent variable, then ’~’ is used as regression sign, and the formula
of a linear combination of independent variable plus constant, such as y1 ~ 0.5
+ 0.2*y2. ’#’ and ’!’ can be used as a comment (like lavaan). For the intercept,
users may use ’p()’ to specify the average proportion of missing, such as y1
~ p(0.2) + 0.3*y2, which the average missing proportion of y1 is 0.2 and the
missing of y1 depends on y2. Users may visualize the missing proportion from
the logistic specification by the plotLogitMiss function.

logical A matrix of logical values (TRUE/FALSE). If a value in the dataset is correspond-
ing to the TRUE in the logical matrix, the value will be missing.

Details

Without specifying any arguments, no missing values will be introduced.

A single covariate is required to specify MAR missing - this covariate can be distributed in any way.
This covariate can be either continuous or categorical, as long as it is numerical. If the covariate is
categorical, the threshold should be specified to one of the levels.

MAR missingness is specified using the threshold method - any value on the covariate that is above
the specified threshold indicates a row eligible for deletion. If the specified total amount of MAR
missingness is not possible given the total rows eligible based on the threshold, the function itera-
tively lowers the threshold until the total percent missing is possible.

Planned missingness is parameterized by the number of forms (n). This is used to divide the cases
into n groups. If the column groupings are not specified, a naive method will be used that divides
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the columns into n+1 equal forms sequentially (1-4,5-9,10-13..), where the first group is the shared
form.The first list of column indices given will be used as the shared group. If this is not desired,
this list can be left empty.

For attrition, the probability can be specified as a single value or as a vector. For a single value,
the probability of attrition will be the same across time points, and affects only cases not previously
lost due to attrition. If this argument is a vector, this specifies different probabilities of attrition for
each time point. Values will be recycled if this vector is smaller than the specified number of time
points.

An MNAR processes can be generated by specifying MAR missingness and then dropping the
covariate from the subsequent analysis.

Currently, if MAR missing is imposed along with attrition, both processes will use the same covari-
ate and threshold.

Currently, all types of missingness (MCAR, MAR, planned, and attrition) are imposed indepen-
dently. This means that specified global values of percent missing will not be additive (10 percent
MCAR + 10 percent MAR does not equal 20 percent total missing).

Value

A data matrix with NAs introduced in the way specified by the arguments.

Author(s)

Patrick Miller (University of Kansas; <patr1ckm@ku.edu>), Alexander M. Schoemann (East Car-
olina University; <schoemanna@ecu.edu>)

See Also

• SimMissing for the alternative way to save missing data feature for using in the sim function.

Examples

data <- matrix(rep(rnorm(10,1,1),19),ncol=19)
datac <- cbind(data,rnorm(10,0,1),rnorm(10,5,5))

# Imposing Missing with the following arguments produces no missing values
imposeMissing(data)
imposeMissing(data,cov=c(1,2))
imposeMissing(data,pmMCAR=0)
imposeMissing(data,pmMAR=0)
imposeMissing(data,nforms=0)

#Some more usage examples

# No missing at variables 1 and 2
imposeMissing(data,cov=c(1,2),pmMCAR=.1)

# 3-Form design
imposeMissing(data,nforms=3)

# 3-Form design with specified groups of items (XABC)
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imposeMissing(data, nforms = 3, itemGroups =
list(c(1,2,3,4,5), c(6,7,8,9,10), c(11,12,13,14,15), c(16,17,18,19)))

# 3-Form design when variables 20 and 21 are not missing
imposeMissing(datac,cov=c(20,21),nforms=3)

# 2 method design where the expensive measure is on Variable 19
imposeMissing(data,twoMethod=c(19,.8))

# Impose missing data with percent attrition of 0.1 in 5 time points
imposeMissing(datac,cov=21,prAttr=.1,timePoints=5)

# Logistic-regression MAR
colnames(data) <- paste("y", 1:ncol(data), sep="")
script <- 'y1 ~ 0.05 + 0.1*y2 + 0.3*y3

y4 ~ -2 + 0.1*y4
y5 ~ -0.5'

imposeMissing(data, logit=script)

inspect Extract information from a simulation result

Description

Extract information from a simulation result

Arguments

object The target SimResult object

what The target component to be extracted. Please see details below.

improper Specify whether to include the information from the replications with improper
solutions

nonconverged Specify whether to include the information from the nonconvergent replications

Details

Here are the list of information that can be specified in the what argument. The items starting with
* are the information that the improper and nonconverged arguments are not applicable.

• *"modeltype": The type of the simulation result

• *"nrep": The number of overall replications, including converged and nonconverged replica-
tions

• "param": Parameter values (equivalent to the getPopulation function)

• "stdparam": Standardized parameter values (equivalent to the getPopulation function with
std = TRUE)

• "coef": Parameter estimates (equivalent to the coef method)
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• "se": Standard errors

• "fit": Fit indices

• "misspec": Misspecified parameter values

• "popfit": Population misfit

• "fmi1": Fraction missings type 1

• "fmi2": Fraction missings type 2

• "std": Standardized Parameter Estimates

• "stdse": Standard Errors of Standardized Values

• "cilower": Lower bounds of confidence intervals

• "ciupper": Upper bounds of confidence intervals

• "ciwidth": Widths of confidence intervals

• *"seed": Seed number (equivalent to the summarySeed function)

• "ngroup": Sample size of each group

• "ntotal": Total sample size

• "mcar": Percent missing completely at random

• "mar": Percent missing at random

• "extra": Extra output from the outfun argument from the sim function)

• *"time": Time elapsed in running the simulation (equivalent to the summaryTime function)

• *"converged": Convergence of each replication

Value

The target information depending on the what argument

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

SimResult for the object input

Examples

## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))
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VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")

# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model, n=200)
inspect(Output, "coef")
inspect(Output, "param")
inspect(Output, "se", improper = TRUE, nonconverged = TRUE)

## End(Not run)

likRatioFit Find the likelihood ratio (or Bayes factor) based on the bivariate dis-
tribution of fit indices

Description

Find the log-likelihood of the observed fit indices on Model 1 and 2 from the real data on the
bivariate sampling distribution of fit indices fitting Model 1 and Model 2 by the datasets from the
Model 1 and Model 2. Then, the likelihood ratio is computed (which may be interpreted as posterior
odd). If the prior odd is 1 (by default), the likelihood ratio is equivalent to Bayes Factor.

Usage

likRatioFit(outMod1, outMod2, dat1Mod1, dat1Mod2, dat2Mod1, dat2Mod2,
usedFit=NULL, prior=1)

Arguments

outMod1 lavaan that saves the analysis result of the first model from the target dataset

outMod2 lavaan that saves the analysis result of the second model from the target dataset

dat1Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created
from Model 1

dat1Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created
from Model 1

dat2Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created
from Model 2

dat2Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created
from Model 2

usedFit Vector of names of fit indices that researchers wish to getCutoffs from. The
default is to getCutoffs of all fit indices.

prior The prior odds. The prior probability that Model 1 is correct over the prior
probability that Model 2 is correct.
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Value

The likelihood ratio (Bayes Factor) in preference of Model 1 to Model 2. If the value is greater than
1, Model 1 is preferred. If the value is less than 1, Model 2 is preferred.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

SimResult for a detail of simResult pValueNested for a nested model comparison by the difference
in fit indices pValueNonNested for a nonnested model comparison by the difference in fit indices

Examples

## Not run:
# Model A; Factor 1 --> Factor 2; Factor 2 --> Factor 3
library(lavaan)
loading <- matrix(0, 11, 3)
loading[1:3, 1] <- NA
loading[4:7, 2] <- NA
loading[8:11, 3] <- NA
path.A <- matrix(0, 3, 3)
path.A[2, 1] <- NA
path.A[3, 2] <- NA
model.A <- estmodel(LY=loading, BE=path.A, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))

out.A <- analyze(model.A, PoliticalDemocracy)

# Model A; Factor 1 --> Factor 3; Factor 3 --> Factor 2
path.B <- matrix(0, 3, 3)
path.B[3, 1] <- NA
path.B[2, 3] <- NA
model.B <- estmodel(LY=loading, BE=path.B, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))

out.B <- analyze(model.B, PoliticalDemocracy)

loading.mis <- matrix("runif(1, -0.2, 0.2)", 11, 3)
loading.mis[is.na(loading)] <- 0

# Create SimSem object for data generation and data analysis template
datamodel.A <- model.lavaan(out.A, std=TRUE, LY=loading.mis)
datamodel.B <- model.lavaan(out.B, std=TRUE, LY=loading.mis)

# Get sample size
n <- nrow(PoliticalDemocracy)

# The actual number of replications should be greater than 20.
output.A.A <- sim(20, n=n, model.A, generate=datamodel.A)
output.A.B <- sim(20, n=n, model.B, generate=datamodel.A)
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output.B.A <- sim(20, n=n, model.A, generate=datamodel.B)
output.B.B <- sim(20, n=n, model.B, generate=datamodel.B)

# Find the likelihood ratio ;The output may contain some warnings here.
# When the number of replications increases (e.g., 1000), the warnings should disappear.
likRatioFit(out.A, out.B, output.A.A, output.A.B, output.B.A, output.B.B)

## End(Not run)

miss Specifying the missing template to impose on a dataset

Description

Specifying the missing template (SimMissing) to impose on a dataset. The template will be used in
Monte Carlo simulation such that, in the sim function, datasets are created and imposed by missing
values created by this template. See imposeMissing for further details of each argument.

Usage

miss(cov = 0, pmMCAR = 0, pmMAR = 0, logit = "", nforms = 0, itemGroups = list(),
timePoints = 1, twoMethod = 0, prAttr = 0, m = 0,
package = "default", convergentCutoff = 0.8, ignoreCols = 0,
threshold = 0, covAsAux = TRUE, logical = NULL, ...)

Arguments

cov Column indices of any normally distributed covariates used in the data set.

pmMCAR Decimal percent of missingness to introduce completely at random on all vari-
ables.

pmMAR Decimal percent of missingness to introduce using the listed covariates as pre-
dictors.

logit The script used for imposing missing values by logistic regression. The script
is similar to the specification of regression in lavaan such that each line begins
with a dependent variable, then ’~’ is used as regression sign, and the formula
of a linear combination of independent variable plus constant, such as y1 ~ 0.5
+ 0.2*y2. ’#’ and ’!’ can be used as a comment (like lavaan). For the intercept,
users may use ’p()’ to specify the average proportion of missing, such as y1
~ p(0.2) + 0.3*y2, which the average missing proportion of y1 is 0.2 and the
missing of y1 depends on y2. Users may visualize the missing proportion from
the logistic specification by the plotLogitMiss function.

nforms The number of forms for planned missing data designs, not including the shared
form.

itemGroups List of lists of item groupings for planned missing data forms. Without this,
items will be divided into groups sequentially (e.g. 1-3,4-6,7-9,10-12)
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timePoints Number of timepoints items were measured over. For longitudinal data, planned
missing designs will be implemented within each timepoint.

twoMethod With missing on one variable: vector of (column index, percent missing). Will
put a given percent missing on that column in the matrix to simulate a two
method planned missing data research design. With missing on two or more
variables: list of (column indices, percent missing).

prAttr Probability (or vector of probabilities) of an entire case being removed due to
attrition at a given time point. See imposeMissing for further details.

m The number of imputations. The default is 0 such that the full information max-
imum likelihood is used.

package The package to be used in multiple imputation. The default value of this function
is "default". For the default option, if m is 0, the full information maximum
likelihood is used. If m is greater than 0, the "mice" package is used. The
possible inputs are "default", "Amelia", or "mice".

convergentCutoff

If the proportion of convergent results across imputations are greater than the
specified value (the default is 80%), the analysis on the dataset is considered
as convergent. Otherwise, the analysis is considered as nonconvergent. This
attribute is applied for multiple imputation only.

ignoreCols The columns not imposed any missing values for any missing data patterns

threshold The threshold of covariates that divide between the area to impose missing and
the area not to impose missing. The default threshold is the mean of the covari-
ate.

covAsAux If TRUE, the covariate listed in the object will be used as auxiliary variables
when putting in the model object. If FALSE, the covariate will be included in the
analysis.

logical A matrix of logical values (TRUE/FALSE). If a value in the dataset is correspond-
ing to the TRUE in the logical matrix, the value will be missing.

... Additional arguments used in multiple imputation function.

Value

A missing object that contains missing-data template (SimMissing)

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>), Patrick Miller (Uni-
versity of Notre Dame; <pmille13@nd.edu>), Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimMissing The resulting missing object
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Examples

#Example of imposing 10% MCAR missing in all variables with no imputations (FIML method)
Missing <- miss(pmMCAR=0.1, ignoreCols="group")
summary(Missing)

loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

#Create data
dat <- generate(CFA.Model, n = 20)

#Impose missing
datmiss <- impose(Missing, dat)

#Analyze data
out <- analyze(CFA.Model, datmiss)
summary(out)

#Missing using logistic regression
script <- 'y1 ~ 0.05 + 0.1*y2 + 0.3*y3
y4 ~ -2 + 0.1*y4
y5 ~ -0.5'

Missing2 <- miss(logit=script, pmMCAR=0.1, ignoreCols="group")
summary(Missing2)
datmiss2 <- impose(Missing2, dat)

#Missing using logistic regression (2)
script <- 'y1 ~ 0.05 + 0.5*y3
y2 ~ p(0.2)
y3 ~ p(0.1) + -1*y1
y4 ~ p(0.3) + 0.2*y1 + -0.3*y2
y5 ~ -0.5'

Missing2 <- miss(logit=script)
summary(Missing2)
datmiss2 <- impose(Missing2, dat)

#Example to create simMissing object for 3 forms design at 3 timepoints with 10 imputations
Missing <- miss(nforms=3, timePoints=3, numImps=10)

#Missing template for data analysis with multiple imputation
Missing <- miss(package="mice", m=10, convergentCutoff=0.6)

model Data generation template and analysis template for simulation.
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Description

This function creates a model template (lavaan parameter table), which can be used for data genera-
tion and/or analysis for simulated structural equation modeling using simsem. Models are specified
using Y-side parameter matrices with LISREL syntax notation. Each parameter matrix must be a
SimMatrix or SimVector built using bind. In addition to the usual Y-side matrices in LISREL,
both PS and TE can be specified using correlation matrices (RPS, RTE) and scaled by a vector of
residual variances (VTE, VPS) or total variances (VY, VE). Multiple group models can be created
by passing lists of SimMatrix or SimVector to arguments, or by simply specifying the number of
groups when all group models are identical.

Usage

model(LY = NULL, PS = NULL, RPS = NULL, TE = NULL, RTE = NULL, BE = NULL,
VTE = NULL, VY = NULL, VPS = NULL, VE = NULL, TY = NULL, AL = NULL, MY = NULL,
ME = NULL, KA = NULL, GA = NULL, modelType, indLab = NULL, facLab = NULL,
covLab = NULL, groupLab = "group", ngroups = 1, con = NULL)

model.cfa(LY = NULL,PS = NULL,RPS = NULL, TE = NULL,RTE = NULL, VTE = NULL,
VY = NULL, VPS = NULL, VE=NULL, TY = NULL, AL = NULL, MY = NULL, ME = NULL,
KA = NULL, GA = NULL, indLab = NULL, facLab = NULL, covLab = NULL,
groupLab = "group", ngroups = 1, con = NULL)

model.path(PS = NULL, RPS = NULL, BE = NULL, VPS = NULL, VE=NULL, AL = NULL,
ME = NULL, KA = NULL, GA = NULL, indLab = NULL, facLab = NULL, covLab = NULL,
groupLab = "group", ngroups = 1, con = NULL)

model.sem(LY = NULL,PS = NULL,RPS = NULL, TE = NULL,RTE = NULL, BE = NULL,
VTE = NULL, VY = NULL, VPS = NULL, VE=NULL, TY = NULL, AL = NULL, MY = NULL,
ME = NULL, KA = NULL, GA = NULL, indLab = NULL, facLab = NULL, covLab = NULL,
groupLab = "group", ngroups = 1, con = NULL)

Arguments

LY Factor loading matrix from endogenous factors to Y indicators (must be SimMatrix
object).

PS Residual variance-covariance matrix among endogenous factors (must be SimMatrix
object). Either RPS or PS (but not both) must be specified in SEM and CFA
models.

RPS Residual correlation matrix among endogenous factors (must be SimMatrix ob-
ject). Either RPS or PS (but not both) must be specified in SEM and CFA mod-
els.

TE Measurement error variance-covariance matrix among Y indicators (must be
SimMatrix object). Either RTE or TE (but not both) must be specified in SEM
and CFA models.

RTE Measurement error correlation matrix among Y indicators (must be SimMatrix
object). Either RTE or TE (but not both) must be specified in SEM and CFA
models.

BE Regression coefficient matrix among endogenous factors (must be SimMatrix
object). BE must be specified in path analysis and SEM models.
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VTE Measurement error variance of indicators (must be SimVector object). Either
VTE or VY (but not both) can be specified when RTE (instead of TE) is speci-
fied.

VY Total variance of indicators (must be SimVector object). Either VTE or VY (but
not both) can be specified when RTE (instead of TE) is specified.

VPS Residual variance of factors (must be SimVector object). Either VPS or VE (but
not both) can be specified when RPS (instead of PS) is specified.

VE Total variance of of factors (must be SimVector object). Either VPS or VE (but
not both) can be specified when RPS (instead of PS) is specified.

TY Measurement intercepts of Y indicators (must be SimVector object). Either TY
or MY (but not both) can be specified.

AL Endogenous factor intercepts (must be SimVector object). Either AL or ME
(but not both) can be specified.

MY Y indicator means (must be SimVector object). Either TY or MY (but not both)
can be specified.

ME Total mean of endogenous factors (must be SimVector object). NOTE: Either
endogenous factor intercept or total mean of endogenous factor is specified.
Both cannot be simultaneously specified.

KA Regression coefficient matrix from covariates to indicators (must be SimMatrix
object). KA is needed when (fixed) exogenous covariates are needed only.

GA Regression coefficient matrix from covariates to factors (must be SimMatrix
object). GA is needed when (fixed) exogenous covariates are needed only.

modelType "CFA", "Sem", or "Path". Model type must be specified to ensure that the ma-
trices specified in model templates for data generation and analysis correspond
to what the user intends.

indLab Character vector of indicator labels. If left blank, automatic labels will be gen-
erated as y1, y2, ... yy.

facLab Character vector of factor labels. If left blank, automatic labels will be generated
as f1, f2, ... ff

covLab Character vector of covariate labels. If left blank, automatic labels will be gen-
erated as z1, z2, ... zz

groupLab Character of group-variable label (not the names of each group). If left blank,
automatic labels will be generated as group

ngroups Number of groups for data generation (defaults to 1). Should only be specified
for multiple group models in which all parameter matrices are identical across
groups (when ngroups > 1, specified matrices are replicated for all groups). For
multiple group models in which parameter matrices differ among groups, pa-
rameter matrices should instead be specified as a list (if any matrix argument is
a list, the number of groups will be equal to the list’s length, and the ngroups
argument will be ignored).

con Additional parameters (phantom variables), equality constraints, and inequality
constraints. Additional parameters must be specified using lavaan syntax. Al-
lowed operators are ":=" (is defined as), "==" (is equal to), "<" (is less than),
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and ">" (is greater than). Names used in syntax must correspond to labels de-
fined on free parameters in the model (with the exception that the name to the
left of ":=" is a new parameter name). On the right hand side of all operators,
any mathematical expressions are allowed, e.g., "newparam := (load1 + load2
+ load3)/3". For the "<" and ">" operators in data generation, if the specified
relation is at odds with parameter specifications (e.g., the parameter to the left
of the ">" operator is less that the parameter to the right), the left hand side pa-
rameter will be changed so that the relation holds with a very small difference
(i.e., 0.000001). For example, in "load1 > load2", if load1 is 0.5 and load2 is
0.6, load1 will be changed to 0.6 + 0.000001 = 0.600001.

Details

The simsem package is intricately tied to the lavaan package for analysis of structural equation mod-
els. The analysis template that is generated by model is a lavaan parameter table, a low-level access
point to lavaan that allows repeated analyses to happen more rapidly. If desired, the parameter table
generated can be used directly with lavaan for many analyses.

The data generation template is simply a list of SimMatrix or SimVector objects. The SimSem
object can be passed to the function generate to generate data, or can be passed to the function sim
to generate and/or analyze data.

To simulate multiple group data, users can either specify a integer in the ngroups argument (which
creates a list of identical model arguments for each group), or pass a list of SimMatrix or SimVector
to any of the matrix arguments with length(s) equal to the number of groups desired (this approach
will cause the ngroups argument to be ignored). If only one argument is a list, all other arguments
will be replicated across groups (with the same parameter identification, population parameter val-
ues/distributions, and misspecification). If equality constraints are specified, these parameters will
be constrained to be equal across groups.

The model.cfa, model.path, and model.sem are the shortcuts for the model function when modelType
are "CFA", "Path", and "SEM", respectively.

Value

SimSem object that contains the data generation template (@dgen) and analysis template (@pt).

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd.edu>), Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• sim for simulations using the SimSem template.

• generate To generate data using the SimSem template.

• analyze To analyze real or generated data using the SimSem template.

• draw To draw parameters using the SimSem template.
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Examples

# Example 1: Confirmatory factor analysis
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")

# Example 2: Multiple-group CFA with weak invariance
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- paste0("con", 1:3)
loading[4:6, 2] <- paste0("con", 4:6)
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VTE <- bind(rep(NA, 6), 0.51)

CFA.Model <- model(LY = LY, RPS = list(RPS, RPS), RTE = list(RTE, RTE), VTE=list(VTE, VTE),
ngroups=2, modelType = "CFA")

# Example 3: Linear growth curve model with model misspecification
factor.loading <- matrix(NA, 4, 2)
factor.loading[,1] <- 1
factor.loading[,2] <- 0:3
LY <- bind(factor.loading)

factor.mean <- rep(NA, 2)
factor.mean.starting <- c(5, 2)
AL <- bind(factor.mean, factor.mean.starting)

factor.var <- rep(NA, 2)
factor.var.starting <- c(1, 0.25)
VPS <- bind(factor.var, factor.var.starting)

factor.cor <- matrix(NA, 2, 2)
diag(factor.cor) <- 1
RPS <- binds(factor.cor, 0.5)
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VTE <- bind(rep(NA, 4), 1.2)

RTE <- binds(diag(4))

TY <- bind(rep(0, 4))

LCA.Model <- model(LY=LY, RPS=RPS, VPS=VPS, AL=AL, VTE=VTE, RTE=RTE, TY=TY, modelType="CFA")

# Example 4: Path analysis model with misspecified direct effect
path.BE <- matrix(0, 4, 4)
path.BE[3, 1:2] <- NA
path.BE[4, 3] <- NA
starting.BE <- matrix("", 4, 4)
starting.BE[3, 1:2] <- "runif(1, 0.3, 0.5)"
starting.BE[4, 3] <- "runif(1,0.5,0.7)"
mis.path.BE <- matrix(0, 4, 4)
mis.path.BE[4, 1:2] <- "runif(1,-0.1,0.1)"
BE <- bind(path.BE, starting.BE, misspec=mis.path.BE)

residual.error <- diag(4)
residual.error[1,2] <- residual.error[2,1] <- NA
RPS <- binds(residual.error, "rnorm(1,0.3,0.1)")

ME <- bind(rep(NA, 4), 0)

Path.Model <- model(RPS = RPS, BE = BE, ME = ME, modelType="Path")

# Example 5: Full SEM model
loading <- matrix(0, 8, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:8, 3] <- "con1"
loading.start <- matrix("", 8, 3)
loading.start[1:3, 1] <- 0.7
loading.start[4:6, 2] <- 0.7
loading.start[7:8, 3] <- "rnorm(1,0.6,0.05)"
LY <- bind(loading, loading.start)

RTE <- binds(diag(8))

factor.cor <- diag(3)
factor.cor[1, 2] <- factor.cor[2, 1] <- NA
RPS <- binds(factor.cor, 0.5)

path <- matrix(0, 3, 3)
path[3, 1:2] <- NA
path.start <- matrix(0, 3, 3)
path.start[3, 1] <- "rnorm(1,0.6,0.05)"
path.start[3, 2] <- "runif(1,0.3,0.5)"
BE <- bind(path, path.start)

SEM.model <- model(BE=BE, LY=LY, RPS=RPS, RTE=RTE, modelType="SEM")
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# Shortcut example
SEM.model <- model.sem(BE=BE, LY=LY, RPS=RPS, RTE=RTE)

# Example 6: Multiple Group Model
loading1 <- matrix(NA, 6, 1)
LY1 <- bind(loading1, 0.7)
loading2 <- matrix(0, 6, 2)
loading2[1:3, 1] <- NA
loading2[4:6, 2] <- NA
LY2 <- bind(loading2, 0.7)

latent.cor2 <- matrix(NA, 2, 2)
diag(latent.cor2) <- 1
RPS1 <- binds(as.matrix(1))
RPS2 <- binds(latent.cor2, 0.5)

RTE <- binds(diag(6))

VTE <- bind(rep(NA, 6), 0.51)

noninvariance <- model(LY = list(LY1, LY2), RPS = list(RPS1, RPS2), RTE = list(RTE, RTE),
VTE=list(VTE, VTE), ngroups=2, modelType = "CFA")

# Example 7: Inequality Constraints

loading.in <- matrix(0, 6, 2)
loading.in[1:3, 1] <- c("load1", "load2", "load3")
loading.in[4:6, 2] <- c("load4", "load5", "load6")
mis <- matrix(0,6,2)
mis[loading.in == "0"] <- "runif(1, -0.1, 0.1)"
LY.in <- bind(loading.in, "runif(1, 0.7, 0.8)", mis)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VTE <- bind(rep(NA, 6), 0.51)

VPS1 <- bind(rep(1, 2))

VPS2 <- bind(rep(NA, 2), c(1.1, 1.2))

# Inequality constraint
script <- "
sth := load1 + load2 + load3
load4 == (load5 + load6) / 2
load4 > 0
load5 > 0
sth2 := load1 - load2
"
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# Model Template
weak <- model(LY = LY.in, RPS = RPS, VPS=list(VPS1, VPS2), RTE = RTE, VTE=VTE, ngroups=2,
modelType = "CFA", con=script)

model.lavaan Build the data generation template and analysis template from the
lavaan result

Description

Creates a data generation and analysis template (lavaan parameter table) for simulations with the
lavaan result. Model misspecification may be added into the template by a vector, a matrix, or a
list of vectors or matrices (for multiple groups).

Usage

model.lavaan(object, std = FALSE, LY = NULL, PS = NULL, RPS = NULL,
TE = NULL, RTE = NULL, BE = NULL, VTE = NULL, VY = NULL, VPS = NULL,
VE=NULL, TY = NULL, AL = NULL, MY = NULL, ME = NULL, KA = NULL,
GA = NULL)

Arguments

object A lavaan object to be used to build the data generation and analysis template.

std If TRUE, use the resulting standardized parameters for data generation. If FALSE,
use the unstandardized parameters for data generation.

LY Model misspecification in factor loading matrix from endogenous factors to Y
indicators (need to be a matrix or a list of matrices).

PS Model misspecification in residual covariance matrix among endogenous factors
(need to be a symmetric matrix or a list of symmetric matrices).

RPS Model misspecification in residual correlation matrix among endogenous factors
(need to be a symmetric matrix or a list of symmetric matrices).

TE Model misspecification in measurement error covariance matrix among Y indi-
cators (need to be a symmetric matrix or a list of symmetric matrices).

RTE Model misspecification in measurement error correlation matrix among Y indi-
cators (need to be a symmetric matrix or a list of symmetric matrices).

BE Model misspecification in regression coefficient matrix among endogenous fac-
tors (need to be a symmetric matrix or a list of symmetric matrices).

VTE Model misspecification in measurement error variance of indicators (need to be
a vector or a list of vectors).

VY Model misspecification in total variance of indicators (need to be a vector or a
list of vectors). NOTE: Either measurement error variance or indicator variance
is specified. Both cannot be simultaneously specified.

VPS Model misspecification in residual variance of factors (need to be a vector or a
list of vectors).
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VE Model misspecification in total variance of of factors (need to be a vector or a
list of vectors). NOTE: Either residual variance of factors or total variance of
factors is specified. Both cannot be simulatneously specified.

TY Model misspecification in measurement intercepts of Y indicators. (need to be
a vector or a list of vectors).

AL Model misspecification in endogenous factor intercept (need to be a vector or a
list of vectors).

MY Model misspecification in overall Y indicator means. (need to be a vector or a
list of vectors). NOTE: Either measurement intercept of indicator mean can be
specified. Both cannot be specified simultaneously.

ME Model misspecification in total mean of endogenous factors (need to be a vector
or a list of vectors). NOTE: Either endogenous factor intercept or total mean of
endogenous factor is specified. Both cannot be simultaneously specified.

KA Model misspecification in regression coefficient matrix from covariates to in-
dicators (need to be a matrix or a list of matrices). KA is applicable when
exogenous covariates are specified only.

GA Model misspecification in regression coefficient matrix from covariates to fac-
tors (need to be a matrix or a list of matrices). KA is applicable when exogenous
covariates are specified only.

Value

SimSem object that contains the data generation template (@dgen) and analysis template (@pt).

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• model To build data generation and data analysis template for simulation.

• sim for simulations using the SimSem template.

• generate To generate data using the SimSem template.

• analyze To analyze real or generated data using the SimSem template.

• draw To draw parameters using the SimSem template.

Examples

library(lavaan)
HS.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data=HolzingerSwineford1939)

# Create data generation and data analysis model from lavaan
# Data generation is based on standardized parameters
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datamodel1 <- model.lavaan(fit, std=TRUE)

# Data generation is based on unstandardized parameters
datamodel2 <- model.lavaan(fit, std=FALSE)

# Data generation model with misspecification on cross-loadings
crossload <- matrix("runif(1, -0.1, 0.1)", 9, 3)
crossload[1:3, 1] <- 0
crossload[4:6, 2] <- 0
crossload[7:9, 3] <- 0
datamodel3 <- model.lavaan(fit, std=TRUE, LY=crossload)

multipleAllEqual Test whether all objects are equal

Description

Test whether all objects are equal. The test is based on the all.equal function.

Usage

multipleAllEqual(...)

Arguments

... The target objects

Value

TRUE if all objects are equal.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

multipleAllEqual(1:5, 1:5, seq(2, 10, 2)/2) # Should be TRUE
multipleAllEqual(1:5, 1:6, seq(2, 10, 2)/2) # Should be FALSE
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plotCIwidth Plot a confidence interval width of a target parameter

Description

Plot a confidence interval width of a target parameter

Usage

plotCIwidth(object, targetParam, assurance = 0.50, useContour = TRUE)

Arguments

object The target (SimResult

targetParam One or more target parameters to be plotted

assurance The percentile of the resulting width. When assurance is 0.50, the median of the
widths is provided. See Lai & Kelley (2011) for more details.

useContour If there are two things from varying sample size, varying percent completely at
random, or varying percent missing at random, the plotCutoff function will
provide 3D graph. A contour graph is a default. However, if this is specified as
FALSE, perspective plot is used.

Value

NONE. The plot the confidence interval width is provided.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Lai, K., & Kelley, K. (2011). Accuracy in parameter estimation for targeted effects in structural
equation modeling: Sample size planning for narrow confidence intervals. Psychological Methods,
16, 127-148.

See Also

• SimResult for simResult that used in this function.

• getCIwidth to get confidence interval widths
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Examples

## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTE <- binds(error.cor)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=200, model=CFA.Model)

# Plot the widths of factor correlation
plotCIwidth(Output, "f1~~f2", assurance = 0.80)

# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output2 <- sim(NULL, n=seq(450, 500, 10), model=CFA.Model)

# Plot the widths along sample size value
plotCIwidth(Output2, "f1~~f2", assurance = 0.80)

# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)
Output3 <- sim(NULL, n=seq(450, 500, 10), pmMCAR=c(0, 0.05, 0.1, 0.15), model=CFA.Model)

# Plot the contours that each contour represents the value of widths at each level
# of sample size and percent missing completely at random
plotCIwidth(Output3, "f1~~f2", assurance = 0.80)

## End(Not run)

plotCoverage Make a plot of confidence interval coverage rates

Description

Make a plot of confidence interval coverage rates given varying parameters (e.g., sample size, per-
cent missing completely at random, or random parameters in the model)
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Usage

plotCoverage(object, coverParam, coverValue = NULL, contParam = NULL, contN = TRUE,
contMCAR = TRUE, contMAR = TRUE, useContour = TRUE)

Arguments

object SimResult that includes at least one randomly varying parameter (e.g. sample
size, percent missing, model parameters)

coverParam Vector of parameters names that the user wishes to find coverage rate for. This
can be a vector of names (e.g., "f1=~y2", "f1~~f2").

coverValue A target value used that users wish to find the coverage rate of that value (e.g.,
0). If NULL, the parameter values will be used.

contParam Vector of parameters names that vary over replications that users wish to use in
the plot.

contN Include the varying sample size in the coverage rate plot if available

contMCAR Include the varying MCAR (missing completely at random percentage) in the
coverage rate plot if available

contMAR Include the varying MAR (missing at random percentage) in the coverage rate
plot if available

useContour This argument is used when users specify to plot two varying parameters. If
TRUE, the contour plot is used. If FALSE, perspective plot is used.

Details

Predicting whether the confidence interval of each replication covers target value (or parameter) or
not by varying parameters using logistic regression (without interaction). Then, plot the logistic
curves predicting the probability of significance against the target varying parameters.

Value

Not return any value. This function will plot a graph only.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>), Alexander M. Schoemann (East Carolina
University; <schoemanna@ecu.edu>)

See Also

• SimResult to see how to create a simResult object with randomly varying parameters.

• getCoverage to obtain a coverage rate given varying parameters values.
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Examples

## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.4)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)

Output <- sim(NULL, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2), model=CFA.Model)

# Plot the power of the first factor loading along the sample size value
plotCoverage(Output, "f1=~y1", contMCAR=FALSE)
plotCoverage(Output, "f1=~y1", coverValue = 0, contMCAR=FALSE)

# Plot the power of the correlation along the sample size and percent missing completely at random
plotCoverage(Output, "f1=~y1")

## End(Not run)

plotCutoff Plot sampling distributions of fit indices with fit indices cutoffs

Description

This function will plot sampling distributions of fit indices. The users may add cutoffs by specifying
the alpha level.

Usage

plotCutoff(object, alpha = NULL, revDirec = FALSE, usedFit = NULL,
useContour = TRUE)

Arguments

object The target (SimResult
alpha A priori alpha level to get the cutoffs of fit indices
revDirec The default is to find critical point on the side that indicates worse fit (the right

side of RMSEA or the left side of CFI). If specifying as TRUE, the directions are
reversed.

usedFit The name of fit indices that researchers wish to plot
useContour If there are two things from varying sample size, varying percent completely at

random, or varying percent missing at random, the plotCutoff function will
provide 3D graph. A contour graph is a default. However, if this is specified as
FALSE, perspective plot is used.
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Value

NONE. The plot the fit indices distributions is provided.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult for simResult that used in this function.

• getCutoff to find values of cutoffs based on null hypothesis sampling distributions only

Examples

## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTE <- binds(error.cor)
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=200, model=CFA.Model)

# Plot the cutoffs with desired fit indices
plotCutoff(Output, 0.05, usedFit=c("RMSEA", "SRMR", "CFI", "TLI"))

# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output2 <- sim(NULL, n=seq(450, 500, 10), model=CFA.Model)

# Plot the cutoffs along sample size value
plotCutoff(Output2, 0.05)

# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)
Output3 <- sim(NULL, n=seq(450, 500, 10), pmMCAR=c(0, 0.05, 0.1, 0.15), model=CFA.Model)

# Plot the contours that each contour represents the value of cutoff at each level
# of sample size and percent missing completely at random
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plotCutoff(Output3, 0.05)

## End(Not run)

plotCutoffNested Plot sampling distributions of the differences in fit indices between
nested models with fit indices cutoffs

Description

This function will plot sampling distributions of the differences in fit indices between nested models
if the nested model is true. The users may add cutoffs by specifying the alpha level.

Usage

plotCutoffNested(nested, parent, alpha = 0.05, cutoff = NULL,
usedFit = NULL, useContour = T)

Arguments

nested SimResult that saves the analysis results of nested model from multiple repli-
cations

parent SimResult that saves the analysis results of parent model from multiple repli-
cations

alpha A priori alpha level

cutoff A priori cutoffs for fit indices, saved in a vector

usedFit Vector of names of fit indices that researchers wish to plot the sampling distri-
bution.

useContour If there are two of sample size, percent completely at random, and percent miss-
ing at random are varying, the plotCutoff function will provide 3D graph.
Contour graph is a default. However, if this is specified as FALSE, perspective
plot is used.

Value

NONE. Only plot the fit indices distributions.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult for simResult that used in this function.

• getCutoffNested to find the difference in fit indices cutoffs
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Examples

## Not run:
# Nested model: One factor
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")

# Parent model: two factors
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, "runif(1, 0.7, 0.9)")
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")

# The actual number of replications should be greater than 10.
Output.NULL.NULL <- sim(10, n=500, model=CFA.Model.NULL)
Output.NULL.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.NULL)

# Plot the cutoffs in nested model comparison
plotCutoffNested(Output.NULL.NULL, Output.NULL.ALT, alpha=0.05)

## End(Not run)

plotCutoffNonNested Plot sampling distributions of the differences in fit indices between
non-nested models with fit indices cutoffs

Description

This function will plot sampling distributions of the differences in fit indices between non-nested
models. The users may add cutoffs by specifying the alpha level.

Usage

plotCutoffNonNested(dat1Mod1, dat1Mod2, dat2Mod1=NULL, dat2Mod2=NULL,
alpha=0.05, cutoff = NULL, usedFit = NULL, useContour = T, onetailed=FALSE)

Arguments

dat1Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created
from Model 1

dat1Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created
from Model 1
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dat2Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created
from Model 2

dat2Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created
from Model 2

alpha A priori alpha level

cutoff A priori cutoffs for fit indices, saved in a vector

usedFit Vector of names of fit indices that researchers wish to plot the sampling distri-
bution.

useContour If there are two of sample size, percent completely at random, and percent miss-
ing at random are varying, the plotCutoff function will provide 3D graph.
Contour graph is a default. However, if this is specified as FALSE, perspective
plot is used.

onetailed If TRUE, the function will find the cutoff from one-tail test. If FALSE, the funciton
will find the cutoff from two-tailed test.

Value

NONE. Only plot the fit indices distributions.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult for simResult that used in this function.

• getCutoffNonNested to find the difference in fit indices cutoffs for non-nested model com-
parison

Examples

## Not run:
# Model A: Factor 1 on Items 1-3 and Factor 2 on Items 4-8
loading.A <- matrix(0, 8, 2)
loading.A[1:3, 1] <- NA
loading.A[4:8, 2] <- NA
LY.A <- bind(loading.A, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, "runif(1, 0.7, 0.9)")
RTE <- binds(diag(8))
CFA.Model.A <- model(LY = LY.A, RPS = RPS, RTE = RTE, modelType="CFA")

# Model B: Factor 1 on Items 1-4 and Factor 2 on Items 5-8
loading.B <- matrix(0, 8, 2)
loading.B[1:4, 1] <- NA
loading.B[5:8, 2] <- NA
LY.B <- bind(loading.B, 0.7)
CFA.Model.B <- model(LY = LY.B, RPS = RPS, RTE = RTE, modelType="CFA")
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# The actual number of replications should be greater than 10.
Output.A.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.A)
Output.A.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.A)
Output.B.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.B)
Output.B.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.B)

# Plot cutoffs for both model A and model B
plotCutoffNonNested(Output.A.A, Output.A.B, Output.B.A, Output.B.B)

# Plot cutoffs for the model A only
plotCutoffNonNested(Output.A.A, Output.A.B)

# Plot cutoffs for the model A with one-tailed test
plotCutoffNonNested(Output.A.A, Output.A.B, onetailed=TRUE)

## End(Not run)

plotDist Plot a distribution of a data distribution object

Description

Plot a distribution of a data distribution object

Usage

plotDist(object, xlim = NULL, ylim = NULL, r = 0, var = NULL, contour = TRUE)

Arguments

object The data distribution object (SimDataDist) to plot a distribution

xlim A numeric vector with two elements specifying the lower and upper limit of the
x-axis to be plotted.

ylim A numeric vector with two elements specifying the lower and upper limit of the
y-axis to be plotted. This argument is applicable for the joint distribution of two
dimensions only

r The correlation of two dimensions in the joint distribution

var A vector of the index of variables to be plotted. The length of vector cannot be
greater than 2.

contour Applicable if two variables are used only. If TRUE, the contour plot is provided.
If FALSE, the perspective plot is provided.

Value

No return value. This function will plot a graph only.
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimDataDist for plotting a data distribution object

Examples

datadist <- bindDist(skewness = c(0, -2, 2), kurtosis = c(2, 4, 4))

# Plot the joint distribution of Variables 1 and 2 with correlation of 0.5
plotDist(datadist, r=0.5, var=1:2)

# Plot the marginal distribution of the variable 3
plotDist(datadist, var=3)

## Not run:
datadist2 <- bindDist(c("chisq", "t", "f"), list(df=5), list(df=3), list(df1=3, df2=5))

# Plot the joint distribution of Variables 1 and 2 with correlation of 0.5
plotDist(datadist2, r=0.5, var=1:2)

# Plot the marginal distribution of the variable 3
plotDist(datadist2, var=3)

## End(Not run)

plotLogitMiss Visualize the missing proportion when the logistic regression method
is used.

Description

Visualize the missing proportion when the logistic regression method is used. The maximum num-
ber of independent variables is 2. The extra independent variables will be fixed as a value (the
default is 0).

Usage

plotLogitMiss(script, ylim=c(0,1), x1lim=c(-3,3), x2lim=c(-3,3), otherx=0,
useContour=TRUE)

Arguments

script The script used in specifying missing data using the logistic regression. See
further details in the logit argument of the miss function

ylim The range of missing proportion to be plotted.
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x1lim The range of the first independent variable to be plotted

x2lim The range of the second independent variable to be plotted

otherx The value of the extra independent variables to be fixed as.

useContour If there are two or more independent variables, the function will provide 3D
graph. Contour graph is a default. However, if this is specified as FALSE, per-
spective plot is used.

Value

Not return any value. This function will plot a graph only. If the number of independent variable
is 0, the bar graph is provided. If the number of independent variables is 1, the logistic curve is
provided. If the number of independent variables is 2, contour or perspective plot is provided.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>), Alexander M. Schoemann (East Carolina
University; <schoemanna@ecu.edu>)

See Also

• miss to create the missing data template

• impose to impose missing data

Examples

script <- 'y1 ~ 0.05 + 0.1*y2 + 0.3*y3
y4 ~ -2 + 0.1*y4
y5 ~ -0.5'

plotLogitMiss(script)

script2 <- 'y1 ~ 0.05 + 0.5*y3
y2 ~ p(0.2)
y3 ~ p(0.1) + -1*y1
y4 ~ p(0.3) + 0.2*y1 + -0.3*y2
y5 ~ -0.5'

plotLogitMiss(script2)

plotMisfit Plot the population misfit in the result object

Description

Plot a histogram of the amount of population misfit in parameter result object or the scatter plot of
the relationship between misspecified parameter and the population misfit or the fit indices

Usage

plotMisfit(object, usedFit="default", misParam=NULL)
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Arguments

object The result object, SimResult

usedFit The sample fit indices or population misfit used to plot. All sample fit indices
are available. The available population misfit are "pop.f0", "pop.rmsea", and
"pop.srmr". If the misParam is not specified, all population misfit are used. If
the misParam is specified, the "pop.rmsea" is used in the plot.

misParam The index or the name of misspecified parameters used to plot.

Value

None. This function will plot only.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

path.BE <- matrix(0, 4, 4)
path.BE[3, 1:2] <- NA
path.BE[4, 3] <- NA
starting.BE <- matrix("", 4, 4)
starting.BE[3, 1:2] <- "runif(1, 0.3, 0.5)"
starting.BE[4, 3] <- "runif(1, 0.5, 0.7)"
mis.path.BE <- matrix(0, 4, 4)
mis.path.BE[4, 1:2] <- "runif(1, -0.1, 0.1)"
BE <- bind(path.BE, starting.BE, misspec=mis.path.BE)

residual.error <- diag(4)
residual.error[1,2] <- residual.error[2,1] <- NA
RPS <- binds(residual.error, "rnorm(1, 0.3, 0.1)")

ME <- bind(rep(NA, 4), 0)

Path.Model <- model(RPS = RPS, BE = BE, ME = ME, modelType="Path")

# The number of replications in actual analysis should be much more than 20
Output <- sim(20, n=500, Path.Model)

# Plot the distribution of population misfit
plotMisfit(Output)

# Plot the relationship between population RMSEA and all misspecified direct effects
plotMisfit(Output, misParam=1:2)

# Plot the relationship between sample CFI and all misspecified direct effects
plotMisfit(Output, usedFit="CFI", misParam=1:2)
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plotPower Make a power plot of a parameter given varying parameters

Description

Make a power plot of a parameter given varying parameters (e.g., sample size, percent missing
completely at random, or random parameters in the model)

Usage

plotPower(object, powerParam, alpha = 0.05, contParam = NULL, contN = TRUE,
contMCAR = TRUE, contMAR = TRUE, useContour=TRUE)

Arguments

object SimResult that includes at least one randomly varying parameter (e.g. sample
size, percent missing, model parameters)

powerParam Vector of parameters names that the user wishes to find power for. This can be
a vector of names (e.g., "f1=~y2", "f1~~f2").

alpha Alpha level to use for power analysis.

contParam Vector of parameters names that vary over replications that users wish to use in
the plot.

contN Include the varying sample size in the power plot if available

contMCAR Include the varying MCAR (missing completely at random percentage) in the
power plot if available

contMAR Include the varying MAR (missing at random percentage) in the power plot if
available

useContour This argument is used when users specify to plot two varying parameters. If
TRUE, the contour plot is used. If FALSE, perspective plot is used.

Details

Predicting whether each replication is significant or not by varying parameters using logistic regres-
sion (without interaction). Then, plot the logistic curves predicting the probability of significance
against the target varying parameters.

Value

Not return any value. This function will plot a graph only.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>), Alexander M. Schoemann (East Carolina
University; <schoemanna@ecu.edu>)
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See Also

• SimResult to see how to create a simResult object with randomly varying parameters.

• getPower to obtain a statistical power given varying parameters values.

Examples

## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.4)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# Specify both continuous sample size and percent missing completely at random.
# Note that more fine-grained values of n and pmMCAR is needed, e.g., n=seq(50, 500, 1)
# and pmMCAR=seq(0, 0.2, 0.01)

Output <- sim(NULL, n=seq(100, 200, 20), pmMCAR=c(0, 0.1, 0.2), model=CFA.Model)

# Plot the power of the first factor loading along the sample size value
plotPower(Output, "f1=~y1", contMCAR=FALSE)

# Plot the power of the correlation along the sample size and percent missing completely at random
plotPower(Output, "f1=~y1")

## End(Not run)

plotPowerFit Plot sampling distributions of fit indices that visualize power of reject-
ing datasets underlying misspecified models

Description

This function will plot sampling distributions of fit indices that visualize power in rejecting the
misspecified models

Usage

plotPowerFit(altObject, nullObject = NULL, cutoff = NULL, usedFit = NULL,
alpha = 0.05, contN = TRUE, contMCAR = TRUE, contMAR = TRUE,
useContour = TRUE, logistic = TRUE)

Arguments

altObject The result object (SimResult) saves the simulation result of fitting the hypothe-
sized model when the hypothesized model is FALSE.



plotPowerFit 99

nullObject The result object (SimResult) saves the simulation result of fitting the hypoth-
esized model when the hypothesized model is TRUE. This argument may be not
specified if the cutoff is specified.

cutoff A vector of priori cutoffs for fit indices.

usedFit Vector of names of fit indices that researchers wish to plot.

alpha A priori alpha level

contN Include the varying sample size in the power plot if available

contMCAR Include the varying MCAR (missing completely at random percentage) in the
power plot if available

contMAR Include the varying MAR (missing at random percentage) in the power plot if
available

useContour If there are two of sample size, percent completely at random, and percent miss-
ing at random are varying, the plotCutoff function will provide 3D graph.
Contour graph is a default. However, if this is specified as FALSE, perspective
plot is used.

logistic If logistic is TRUE and the varying parameter exists (e.g., sample size or per-
cent missing), the plot based on logistic regression predicting the significance
by the varying parameters is preferred. If FALSE, the overlaying scatterplot with
a line of cutoff is plotted.

Value

NONE. Only plot the fit indices distributions.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult for simResult that used in this function.

• getCutoff to find values of cutoffs based on null hypothesis sampling distributions only

• getPowerFit to find power of rejecting the hypothesized model when the hypothesized model
is FALSE.

Examples

## Not run:
# Null model: One factor model
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")

# We make the examples running only 5 replications to save time.
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# In reality, more replications are needed.
Output.NULL <- sim(50, n=50, model=CFA.Model.NULL, generate=CFA.Model.NULL)

# Alternative model: Two-factor model
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, 0.5)
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")
Output.ALT <- sim(50, n=50, model=CFA.Model.NULL, generate=CFA.Model.ALT)

# Plot the power based on derived cutoff from the null model using four fit indices
plotPowerFit(Output.ALT, nullObject=Output.NULL, alpha=0.05,
usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))

# Plot the power of rejecting null model when the rule of thumb from Hu & Bentler (1999) is used
Rule.of.thumb <- c(RMSEA=0.05, CFI=0.95, TLI=0.95, SRMR=0.06)
plotPowerFit(Output.ALT, cutoff=Rule.of.thumb, alpha=0.05,
usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))

# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output.NULL2 <- sim(NULL, n=seq(50, 250, 25), model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT2 <- sim(NULL, n=seq(50, 250, 25), model=CFA.Model.NULL, generate=CFA.Model.ALT)

# Plot the power based on derived cutoff from the null model using four fit indices
# along sample size
plotPowerFit(Output.ALT2, nullObject=Output.NULL2, alpha=0.05,
usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))

# Plot the power based on rule of thumb along sample size
plotPowerFit(Output.ALT2, cutoff=Rule.of.thumb, alpha=0.05,
usedFit=c("RMSEA", "CFI", "TLI", "SRMR"))

## End(Not run)

plotPowerFitNested Plot power of rejecting a nested model in a nested model comparison
by each fit index

Description

This function will plot sampling distributions of the differences in fit indices between parent and
nested models. Two sampling distributions will be compared: nested model is FALSE (alternative
model) and nested model is TRUE (null model).
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Usage

plotPowerFitNested(altNested, altParent, nullNested = NULL,
nullParent = NULL, cutoff = NULL, usedFit = NULL, alpha = 0.05,
contN = TRUE, contMCAR = TRUE, contMAR = TRUE, useContour = TRUE,
logistic = TRUE)

Arguments

altNested SimResult that saves the simulation result of the nested model when the nested
model is FALSE.

altParent SimResult that saves the simulation result of the parent model when the nested
model is FALSE.

nullNested SimResult that saves the simulation result of the nested model when the nested
model is TRUE. This argument may not be specified if the cutoff is specified.

nullParent SimResult that saves the simulation result of the parent model when the nested
model is TRUE. This argument may not be specified if the cutoff is specified.

cutoff A vector of priori cutoffs for the differences in fit indices.

usedFit Vector of names of fit indices that researchers wish to plot.

alpha A priori alpha level

contN Include the varying sample size in the power plot if available

contMCAR Include the varying MCAR (missing completely at random percentage) in the
power plot if available

contMAR Include the varying MAR (missing at random percentage) in the power plot if
available

useContour If there are two of sample size, percent completely at random, and percent miss-
ing at random are varying, the plotCutoff function will provide 3D graph.
Contour graph is a default. However, if this is specified as FALSE, perspective
plot is used.

logistic If logistic is TRUE and the varying parameter exists (e.g., sample size or per-
cent missing), the plot based on logistic regression predicting the significance
by the varying parameters is preferred. If FALSE, the overlaying scatterplot with
a line of cutoff is plotted.

Value

NONE. Only plot the fit indices distributions.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult for simResult that used in this function.

• getCutoffNested to find the cutoffs of the differences in fit indices
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• plotCutoffNested to visualize the cutoffs of the differences in fit indices

• getPowerFitNested to find the power in rejecting the nested model by the difference in fit
indices cutoffs

Examples

## Not run:
# Null model: One-factor model
loading.null <- matrix(0, 6, 1)
loading.null[1:6, 1] <- NA
LY.NULL <- bind(loading.null, 0.7)
RPS.NULL <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model.NULL <- model(LY = LY.NULL, RPS = RPS.NULL, RTE = RTE, modelType="CFA")

# Alternative model: Two-factor model
loading.alt <- matrix(0, 6, 2)
loading.alt[1:3, 1] <- NA
loading.alt[4:6, 2] <- NA
LY.ALT <- bind(loading.alt, 0.7)
latent.cor.alt <- matrix(NA, 2, 2)
diag(latent.cor.alt) <- 1
RPS.ALT <- binds(latent.cor.alt, 0.7)
CFA.Model.ALT <- model(LY = LY.ALT, RPS = RPS.ALT, RTE = RTE, modelType="CFA")

# In reality, more than 10 replications are needed
Output.NULL.NULL <- sim(10, n=500, model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT.NULL <- sim(10, n=500, model=CFA.Model.NULL, generate=CFA.Model.ALT)
Output.NULL.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.NULL)
Output.ALT.ALT <- sim(10, n=500, model=CFA.Model.ALT, generate=CFA.Model.ALT)

# Plot the power based on the derived cutoff from the models analyzed on the null datasets
plotPowerFitNested(Output.ALT.NULL, Output.ALT.ALT, nullNested=Output.NULL.NULL,
nullParent=Output.NULL.ALT)

# Plot the power by only CFI
plotPowerFitNested(Output.ALT.NULL, Output.ALT.ALT, nullNested=Output.NULL.NULL,
nullParent=Output.NULL.ALT, usedFit="CFI")

# The example of continous varying sample size. Note that more fine-grained
# values of n is needed, e.g., n=seq(50, 500, 1)
Output.NULL.NULL2 <- sim(NULL, n=seq(50, 500, 5), model=CFA.Model.NULL, generate=CFA.Model.NULL)
Output.ALT.NULL2 <- sim(NULL, n=seq(50, 500, 5), model=CFA.Model.NULL, generate=CFA.Model.ALT)
Output.NULL.ALT2 <- sim(NULL, n=seq(50, 500, 5), model=CFA.Model.ALT, generate=CFA.Model.NULL)
Output.ALT.ALT2 <- sim(NULL, n=seq(50, 500, 5), model=CFA.Model.ALT, generate=CFA.Model.ALT)

# Plot logistic line for the power based on the derived cutoff from the null model
# along sample size values
plotPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, nullNested=Output.NULL.NULL2,
nullParent=Output.NULL.ALT2)

# Plot scatterplot for the power based on the derived cutoff from the null model
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# along sample size values
plotPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, nullNested=Output.NULL.NULL2,
nullParent=Output.NULL.ALT2, logistic=FALSE)

# Plot scatterplot for the power based on the advanced CFI value
plotPowerFitNested(Output.ALT.NULL2, Output.ALT.ALT2, cutoff=c(CFI=-0.1), logistic=FALSE)

## End(Not run)

plotPowerFitNonNested Plot power of rejecting a non-nested model based on a difference in fit
index

Description

Plot the proportion of the difference in fit indices from one model that does not in the range of
sampling distribution from another model (reject that the dataset comes from the second model) or
indicates worse fit than a specified cutoff. This plot can show the proportion in the second model
that does not in the range of sampling distribution from the first model too.

Usage

plotPowerFitNonNested(dat2Mod1, dat2Mod2, dat1Mod1=NULL, dat1Mod2=NULL,
cutoff = NULL, usedFit = NULL, alpha = 0.05, contN = TRUE, contMCAR = TRUE,
contMAR = TRUE, useContour = TRUE, logistic = TRUE, onetailed = FALSE)

Arguments

dat2Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created
from Model 2

dat2Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created
from Model 2

dat1Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created
from Model 1

dat1Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created
from Model 1

cutoff A vector of priori cutoffs for the differences in fit indices.

usedFit Vector of names of fit indices that researchers wish to plot.

alpha A priori alpha level

contN Include the varying sample size in the power plot if available

contMCAR Include the varying MCAR (missing completely at random percentage) in the
power plot if available

contMAR Include the varying MAR (missing at random percentage) in the power plot if
available
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useContour If there are two of sample size, percent completely at random, and percent miss-
ing at random are varying, the plotCutoff function will provide 3D graph.
Contour graph is a default. However, if this is specified as FALSE, perspective
plot is used.

logistic If logistic is TRUE and the varying parameter exists (e.g., sample size or per-
cent missing), the plot based on logistic regression predicting the significance
by the varying parameters is preferred. If FALSE, the overlaying scatterplot with
a line of cutoff is plotted.

onetailed If TRUE, the function will use the cutoff from one-tail test. If FALSE, the funciton
will use the cutoff from two-tailed test.

Value

NONE. Only plot the fit indices distributions.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult for simResult that used in this function.

• getCutoffNonNested to find the cutoffs of the differences in fit indices for non-nested model
comparison

• plotCutoffNonNested to visualize the cutoffs of the differences in fit indices for non-nested
model comparison

• getPowerFitNonNested to find the power in rejecting the non-nested model by the difference
in fit indices cutoffs

Examples

## Not run:
# Model A: Factor 1 on Items 1-3 and Factor 2 on Items 4-8
loading.A <- matrix(0, 8, 2)
loading.A[1:3, 1] <- NA
loading.A[4:8, 2] <- NA
LY.A <- bind(loading.A, 0.7)
latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, "runif(1, 0.7, 0.9)")
RTE <- binds(diag(8))
CFA.Model.A <- model(LY = LY.A, RPS = RPS, RTE = RTE, modelType="CFA")

# Model B: Factor 1 on Items 1-4 and Factor 2 on Items 5-8
loading.B <- matrix(0, 8, 2)
loading.B[1:4, 1] <- NA
loading.B[5:8, 2] <- NA
LY.B <- bind(loading.B, 0.7)
CFA.Model.B <- model(LY = LY.B, RPS = RPS, RTE = RTE, modelType="CFA")
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# The actual number of replications should be greater than 10.
Output.A.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.A)
Output.A.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.A)
Output.B.A <- sim(10, n=500, model=CFA.Model.A, generate=CFA.Model.B)
Output.B.B <- sim(10, n=500, model=CFA.Model.B, generate=CFA.Model.B)

# Plot the power based on the derived cutoff for both models
plotPowerFitNonNested(Output.B.A, Output.B.B, dat1Mod1=Output.A.A, dat1Mod2=Output.A.B)

# Plot the power based on AIC and BIC cutoffs
plotPowerFitNonNested(Output.B.A, Output.B.B, cutoff=c(AIC=0, BIC=0))

## End(Not run)

popDiscrepancy Find the discrepancy value between two means and covariance matri-
ces

Description

Find the discrepancy value between two means and covariance matrices. See the definition of each
index at summaryMisspec.

Usage

popDiscrepancy(paramM, paramCM, misspecM, misspecCM)

Arguments

paramM The model-implied mean from the real parameters

paramCM The model-implied covariance matrix from the real parameters

misspecM The model-implied mean from the real and misspecified parameters

misspecCM The model-implied covariance matrix from the real and misspecified parameters

Value

The discrepancy between two means and covariance matrices

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Meth-
ods & Research, 21, 230-258.
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Examples

m1 <- rep(0, 3)
m2 <- c(0.1, -0.1, 0.05)
S1 <- matrix(c(1, 0.6, 0.5, 0.6, 1, 0.4, 0.5, 0.4, 1), 3, 3)
S2 <- matrix(c(1, 0.55, 0.55, 0.55, 1, 0.55, 0.55, 0.55, 1), 3, 3)
popDiscrepancy(m1, S1, m2, S2)

popMisfitMACS Find population misfit by sufficient statistics

Description

Find the value quantifying the amount of population misfit: F0, RMSEA, and SRMR. See the
definition of each index at summaryMisspec.

Usage

popMisfitMACS(paramM, paramCM, misspecM, misspecCM, dfParam=NULL, fit.measures="all")

Arguments

paramM The model-implied mean from the real parameters

paramCM The model-implied covariance matrix from the real parameters

misspecM The model-implied mean from the real and misspecified parameters

misspecCM The model-implied covariance matrix from the real and misspecified parameters

dfParam The degree of freedom of the real model

fit.measures The names of indices used to calculate population misfit. There are three types
of misfit: 1) discrepancy function ("f0"; see popDiscrepancy), 2) root mean
squared error of approximation ("rmsea"; Equation 12 in Browne & Cudeck,
1992), and 3) standardized root mean squared residual ("srmr")

Value

The vector of the misfit indices

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Meth-
ods & Research, 21, 230-258.
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Examples

m1 <- rep(0, 3)
m2 <- c(0.1, -0.1, 0.05)
S1 <- matrix(c(1, 0.6, 0.5, 0.6, 1, 0.4, 0.5, 0.4, 1), 3, 3)
S2 <- matrix(c(1, 0.55, 0.55, 0.55, 1, 0.55, 0.55, 0.55, 1), 3, 3)
popMisfitMACS(m1, S1, m2, S2)

pValue Find p-values (1 - percentile) by comparing a single analysis output
from the result object

Description

This function will provide p value from comparing a lavaan) or a OpenMx result from the simula-
tion result (in SimResult).

Usage

pValue(target, dist, usedFit = NULL, nVal = NULL, pmMCARval = NULL,
pmMARval = NULL, df = 0)

Arguments

target A value, multiple values, a lavaan object, or an OpenMx object used to find p
values. This argument could be a cutoff of a fit index.

dist The comparison distribution, which can be a vector of numbers, a data frame, or
a result object.

usedFit The vector of names of fit indices that researchers wish to find the p value from.

nVal The sample size value that researchers wish to find the fit indices cutoffs from

pmMCARval The percent missing completely at random value that researchers wish to find
the fit indices cutoffs from.

pmMARval The percent missing at random value that researchers wish to find the fit indices
cutoffs from.

df The degree of freedom used in spline method in predicting the fit indices by the
predictors. If df is 0, the spline method will not be applied.

Details

In comparing fit indices, the p value is the proportion of the number of replications that provide
poorer fit (e.g., less CFI value or greater RMSEA value) than the analysis result from the observed
data.
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Value

The p values of fit indices are provided, as well as two additional values: andRule and orRule. The
andRule is based on the principle that the model is retained only when all fit indices provide good
fit. The proportion is calculated from the number of replications that have all fit indices indicating
a better model than the observed data. The proportion from the andRule is the most stringent rule
in retaining a hypothesized model. The orRule is based on the principle that the model is retained
only when at least one fit index provides good fit. The proportion is calculated from the number of
replications that have at least one fit index indicating a better model than the observed data. The
proportion from the orRule is the most lenient rule in retaining a hypothesized model.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult to run a simulation study

Examples

## Not run:
# Compare an analysis result with a result of simulation study
library(lavaan)
loading <- matrix(0, 9, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:9, 3] <- NA
targetmodel <- estmodel(LY=loading, modelType="CFA", indLab=paste("x", 1:9, sep=""))
out <- analyze(targetmodel, HolzingerSwineford1939)

loading.trivial <- matrix("runif(1, -0.2, 0.2)", 9, 3)
loading.trivial[is.na(loading)] <- 0
mismodel <- model.lavaan(out, std=TRUE, LY=loading.trivial)

# The actual number of replications should be much greater than 20.
simout <- sim(20, n=nrow(HolzingerSwineford1939), mismodel)

# Find the p-value comparing the observed fit indices against the simulated
# sampling distribution of fit indices
pValue(out, simout)

## End(Not run)

pValueNested Find p-values (1 - percentile) for a nested model comparison

Description

This function will provide p value from comparing the differences in fit indices between nested
models with the simulation results of both parent and nested models when the nested model is true.
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Usage

pValueNested(outNested, outParent, simNested, simParent, usedFit = NULL,
nVal = NULL, pmMCARval = NULL, pmMARval = NULL, df = 0)

Arguments

outNested lavaan that saves the analysis result of the nested model from the target dataset

outParent lavaan that saves the analysis result of the parent model from the target dataset

simNested SimResult that saves the analysis results of nested model from multiple repli-
cations

simParent SimResult that saves the analysis results of parent model from multiple repli-
cations

usedFit Vector of names of fit indices that researchers wish to getCutoffs from. The
default is to getCutoffs of all fit indices.

nVal The sample size value that researchers wish to find the p value from.

pmMCARval The percent missing completely at random value that researchers wish to find
the p value from.

pmMARval The percent missing at random value that researchers wish to find the the p value
from.

df The degree of freedom used in spline method in predicting the fit indices by the
predictors. If df is 0, the spline method will not be applied.

Details

In comparing fit indices, the p value is the proportion of the number of replications that provide
less preference for nested model (e.g., larger negative difference in CFI values or larger positive
difference in RMSEA values) than the analysis result from the observed data.

Value

This function provides a vector of p values based on the comparison of the difference in fit indices
from the real data with the simulation result. The p values of fit indices are provided, as well as two
additional values: andRule and orRule. The andRule is based on the principle that the model is
retained only when all fit indices provide good fit. The proportion is calculated from the number of
replications that have all fit indices indicating a better model than the observed data. The proportion
from the andRule is the most stringent rule in retaining a hypothesized model. The orRule is based
on the principle that the model is retained only when at least one fit index provides good fit. The
proportion is calculated from the number of replications that have at least one fit index indicating
a better model than the observed data. The proportion from the orRule is the most lenient rule in
retaining a hypothesized model.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)
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See Also

• SimResult to run a simulation study

Examples

## Not run:
library(lavaan)

# Nested Model: Linear growth curve model
LY <- matrix(1, 4, 2)
LY[,2] <- 0:3
PS <- matrix(NA, 2, 2)
TY <- rep(0, 4)
AL <- rep(NA, 2)
TE <- diag(NA, 4)
nested <- estmodel(LY=LY, PS=PS, TY=TY, AL=AL, TE=TE, modelType="CFA",
indLab=paste("t", 1:4, sep=""))

# Parent Model: Unconditional growth curve model
LY2 <- matrix(1, 4, 2)
LY2[,2] <- c(0, NA, NA, 3)
parent <- estmodel(LY=LY2, PS=PS, TY=TY, AL=AL, TE=TE, modelType="CFA",
indLab=paste("t", 1:4, sep=""))

# Analyze the output
outNested <- analyze(nested, Demo.growth)
outParent <- analyze(parent, Demo.growth)

# Create data template from the nested model with small misfit on the linear curve
loadingMis <- matrix(0, 4, 2)
loadingMis[2:3, 2] <- "runif(1, -0.1, 0.1)"
datamodel <- model.lavaan(outNested, LY=loadingMis)

# Get the sample size
n <- nrow(Demo.growth)

# The actual replications should be much greater than 30.
simNestedNested <- sim(30, n=n, nested, generate=datamodel)
simNestedParent <- sim(30, n=n, parent, generate=datamodel)

# Find the p-value comparing the observed fit indices against the simulated
# sampling distribution of fit indices
pValueNested(outNested, outParent, simNestedNested, simNestedParent)

## End(Not run)

pValueNonNested Find p-values (1 - percentile) for a non-nested model comparison
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Description

This function will provide p value from comparing the results of fitting real data into two models
against the simulation from fitting the simulated data from both models into both models. The p
values from both sampling distribution under the datasets from the first and the second models are
reported.

Usage

pValueNonNested(outMod1, outMod2, dat1Mod1, dat1Mod2, dat2Mod1, dat2Mod2,
usedFit = NULL, nVal = NULL, pmMCARval = NULL, pmMARval = NULL, df = 0,
onetailed=FALSE)

Arguments

outMod1 lavaan that saves the analysis result of the first model from the target dataset

outMod2 lavaan that saves the analysis result of the second model from the target dataset

dat1Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created
from Model 1

dat1Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created
from Model 1

dat2Mod1 SimResult that saves the simulation of analyzing Model 1 by datasets created
from Model 2

dat2Mod2 SimResult that saves the simulation of analyzing Model 2 by datasets created
from Model 2

usedFit Vector of names of fit indices that researchers wish to getCutoffs from. The
default is to getCutoffs of all fit indices.

nVal The sample size value that researchers wish to find the p value from.

pmMCARval The percent missing completely at random value that researchers wish to find
the p value from.

pmMARval The percent missing at random value that researchers wish to find the the p value
from.

df The degree of freedom used in spline method in predicting the fit indices by the
predictors. If df is 0, the spline method will not be applied.

onetailed If TRUE, the function will convert the p value based on two-tailed test.

Details

In comparing fit indices, the p value is the proportion of the number of replications that provide
less preference for either model 1 or model 2 than the analysis result from the observed data. In
two-tailed test, the function will report the proportion of values under the sampling distribution that
are more extreme that one obtained from real data. If the resulting p value is high (> .05) on one
model and low (< .05) in the other model, the model with high p value is preferred. If the p values
are both high or both low, the decision is undetermined.
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Value

This function provides a vector of p values based on the comparison of the difference in fit indices
from the real data with the simulation results. The p values of fit indices are provided, as well as two
additional values: andRule and orRule. The andRule is based on the principle that the model is
retained only when all fit indices provide good fit. The proportion is calculated from the number of
replications that have all fit indices indicating a better model than the observed data. The proportion
from the andRule is the most stringent rule in retaining a hypothesized model. The orRule is based
on the principle that the model is retained only when at least one fit index provides good fit. The
proportion is calculated from the number of replications that have at least one fit index indicating
a better model than the observed data. The proportion from the orRule is the most lenient rule in
retaining a hypothesized model.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult to run a simulation study

Examples

## Not run:
# Model A; Factor 1 --> Factor 2; Factor 2 --> Factor 3
library(lavaan)
loading <- matrix(0, 11, 3)
loading[1:3, 1] <- NA
loading[4:7, 2] <- NA
loading[8:11, 3] <- NA
path.A <- matrix(0, 3, 3)
path.A[2, 1] <- NA
path.A[3, 2] <- NA
model.A <- estmodel(LY=loading, BE=path.A, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))

out.A <- analyze(model.A, PoliticalDemocracy)

# Model A; Factor 1 --> Factor 3; Factor 3 --> Factor 2
path.B <- matrix(0, 3, 3)
path.B[3, 1] <- NA
path.B[2, 3] <- NA
model.B <- estmodel(LY=loading, BE=path.B, modelType="SEM", indLab=c(paste("x", 1:3, sep=""),
paste("y", 1:8, sep="")))

out.B <- analyze(model.B, PoliticalDemocracy)

loading.mis <- matrix("runif(1, -0.2, 0.2)", 11, 3)
loading.mis[is.na(loading)] <- 0

# Create SimSem object for data generation and data analysis template
datamodel.A <- model.lavaan(out.A, std=TRUE, LY=loading.mis)
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datamodel.B <- model.lavaan(out.B, std=TRUE, LY=loading.mis)

# Get sample size
n <- nrow(PoliticalDemocracy)

# The actual number of replications should be greater than 20.
output.A.A <- sim(20, n=n, model.A, generate=datamodel.A)
output.A.B <- sim(20, n=n, model.B, generate=datamodel.A)
output.B.A <- sim(20, n=n, model.A, generate=datamodel.B)
output.B.B <- sim(20, n=n, model.B, generate=datamodel.B)

# Find the p-value comparing the observed fit indices against the simulated
# sampling distribution of fit indices

pValueNonNested(out.A, out.B, output.A.A, output.A.B, output.B.A, output.B.B)

# If the p-value for model A is significant but the p-value for model B is not
# significant, model B is preferred.

## End(Not run)

rawDraw Draw values from vector or matrix objects

Description

Takes one matrix or vector object (SimMatrix or SimVector) and returns a matrix or a vector with
numerical values for population parameters. If a matrix is symmetric, it is arbitrarily chosen that
parameters on the upper triangular elements are set equal to the parameters on the lower triangular
elements.

Usage

rawDraw(simDat, constraint = TRUE, misSpec = TRUE, parMisOnly = FALSE,
misOnly = FALSE)

Arguments

simDat A matrix or vector object (SimMatrix or SimVector)

constraint If TRUE, then constraints are applied simultaneously

misSpec If TRUE, then a list is returned with [[1]] parameters with no misspec and [[2]]
same parameters + misspec (if any)

parMisOnly If TRUE, then only the parameters + misspecification is returned

misOnly If TRUE, then only the misspecification is returned

Value

A matrix (or vector) or a list of matrices (or vectors) which contains the draw result.
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Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd.edu>)

Examples

loading <- matrix(0, 7, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[1:7, 3] <- NA
loadingVal <- matrix(0, 7, 3)
loadingVal[1:3, 1] <- "runif(1, 0.5, 0.7)"
loadingVal[4:6, 2] <- "runif(1, 0.5, 0.7)"
loadingVal[1:6, 3] <- "runif(1, 0.3, 0.5)"
loadingVal[7, 3] <- 1
loading.mis <- matrix("runif(1, -0.2, 0.2)", 7, 3)
loading.mis[is.na(loading)] <- 0
loading.mis[,3] <- 0
loading.mis[7,] <- 0
loading[1:3, 1] <- "con1"
LY <- bind(loading, loadingVal, misspec=loading.mis)

# Draw values
rawDraw(LY)

# Draw only model parameters containing misspecification
rawDraw(LY, parMisOnly=TRUE)

# Draw only misspecification.
rawDraw(LY, misOnly=TRUE)

setPopulation Set the data generation population model underlying an object

Description

This function will set the data generation population model to be an appropriate one. If the ap-
propriate data generation model is specified, the additional features can be seen in summary or
summaryParam functions on the target object, such as bias in parameter estimates or percentage
coverage.

Usage

setPopulation(target, population)

Arguments

target The result object that you wish to set the data generation population model
(linkS4class{SimResult}).

population The population parameters specified in the linkS4class{SimSem} object
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Value

The target object that is changed the parameter.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult for result object

Examples

# See each class for an example.
## Not run:
# Data generation model
loading <- matrix(0, 7, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[1:7, 3] <- NA
loadingVal <- matrix(0, 7, 3)
loadingVal[1:3, 1] <- "runif(1, 0.5, 0.7)"
loadingVal[4:6, 2] <- "runif(1, 0.5, 0.7)"
loadingVal[1:6, 3] <- "runif(1, 0.3, 0.5)"
loadingVal[7, 3] <- 1
loading.mis <- matrix("runif(1, -0.2, 0.2)", 7, 3)
loading.mis[is.na(loading)] <- 0
loading.mis[,3] <- 0
loading.mis[7,] <- 0
LY <- bind(loading, loadingVal, misspec=loading.mis)

RPS <- binds(diag(3))

path <- matrix(0, 3, 3)
path[2, 1] <- NA
BE <- bind(path, "runif(1, 0.3, 0.5)")

RTE <- binds(diag(7))

VY <- bind(c(rep(NA, 6), 0), c(rep(1, 6), ""))

datamodel <- model(LY=LY, RPS=RPS, BE=BE, RTE=RTE, VY=VY, modelType="SEM")

# Data analysis model
loading <- matrix(0, 7, 3)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7, 3] <- NA
path <- matrix(0, 3, 3)
path[2, 1] <- NA
path[1, 3] <- NA
path[2, 3] <- NA
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errorCov <- diag(NA, 7)
errorCov[7, 7] <- 0
facCov <- diag(3)
analysis <- estmodel(LY=loading, BE=path, TE=errorCov, PS=facCov, modelType="SEM",
indLab=paste("y", 1:7, sep=""))

# In reality, more than 10 replications are needed.
Output <- sim(10, n=200, analysis, generate=datamodel)

# Population
loadingVal <- matrix(0, 7, 3)
loadingVal[1:3, 1] <- 0.6
loadingVal[4:6, 2] <- 0.6
loadingVal[7, 3] <- 1
LY <- bind(loading, loadingVal)
pathVal <- matrix(0, 3, 3)
pathVal[2, 1] <- 0.4
pathVal[1, 3] <- 0.4
pathVal[2, 3] <- 0.4
BE <- bind(path, pathVal)
PS <- binds(facCov)
errorCovVal <- diag(0.64, 7)
errorCovVal[7, 7] <- 0
TE <- binds(errorCov, errorCovVal)
population <- model(LY=LY, PS=PS, BE=BE, TE=TE, modelType="SEM")

# Set up the new population
Output2 <- setPopulation(Output, population)

# This summary will contain the bias information
summary(Output2)

## End(Not run)

sim Run a Monte Carlo simulation with a structural equation model.

Description

This function can be used to generate data, analyze the generated data, and summarized into a
result object where parameter estimates, standard errors, fit indices, and other characteristics of
each replications are saved.

Usage

sim(nRep, model, n, generate = NULL, ..., rawData = NULL, miss = NULL, datafun=NULL,
lavaanfun = "lavaan", outfun=NULL, outfundata = NULL, pmMCAR = NULL,
pmMAR = NULL, facDist = NULL, indDist = NULL, errorDist = NULL,
sequential = FALSE, saveLatentVar = FALSE, modelBoot = FALSE, realData = NULL,
covData = NULL, maxDraw = 50, misfitType = "f0", misfitBounds = NULL,
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averageNumMisspec = FALSE, optMisfit=NULL, optDraws = 50,
createOrder = c(1, 2, 3), aux = NULL, group = NULL, mxFit = FALSE,
mxMixture = FALSE, citype = NULL, cilevel = 0.95, seed = 123321, silent = FALSE,
multicore = options('simsem.multicore')[[1]], cluster = FALSE,
numProc = NULL, paramOnly = FALSE, dataOnly=FALSE, smartStart=FALSE,
previousSim = NULL, completeRep = FALSE, stopOnError = FALSE)

Arguments

nRep Number of replications. If any of the n, pmMCAR, or pmMAR arguments are spec-
ified as lists, the number of replications will default to the length of the list(s),
and nRep need not be specified (can be set NULL).

model There are three options for this argument: 1. SimSem object created by model,
2. lavaan script, lavaan parameter table, fitted lavaan object matching the
analysis model, or a list that contains all argument that users use to run lavaan
(including cfa, sem, lavaan), 3. MxModel object from the OpenMx package, or 4.
a function that takes a data set and return a list of coef, se, and converged (see
details below). For the SimSem object, if the generate argument is not specified,
then the object in the model argument will be used for both data generation and
analysis. If generate is specified, then the model argument will be used for
data analysis only.

n Sample size(s). In single-group models, either a single integer, or a vector of
integers to vary sample size across replications. In multigroup models, either a
list of single integers (for constant group sizes across replications) or a list
of vectors (to vary group sizes across replications). Any non-integers will be
rounded.

generate There are four options for this argument: 1. SimSem object created by model, 2.
lavaan script, lavaan parameter table (for data generation; see simulateData),
fitted lavaan object that estimated all nonzero population parameters, or a list
that contains all argument that users use to run simulateData, 3. MxModel
object with population parameters specified in the starting values of all matrices
in the model, 4. a function that take only one sample size argument (by integer
for single-group model or by a vector of integers for multiple-group model). The
generate argument cannot be specified the same time as the rawData argument.

rawData There are two options for this argument: 1. a list of data frames to be used in
simulations or 2. a population data. If a list of data frames is specified, the nRep
and n arguments must not be specified. If a population data frame is specified,
the nRep and n arguments are required.

miss A missing data template created using the miss function.

datafun A function to be applied to each generated data set across replications.

lavaanfun The character of the function name used in running lavaan model ("cfa", "sem",
"growth", "lavaan"). This argument is required only when lavaan script or a
list of arguments is specified in the model argument.

outfun A function to be applied to the lavaan output at each replication. Output
from this function in each replication will be saved in the simulation output
(SimResult), and can be obtained using the getExtraOutput function.
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outfundata A function to be applied to the lavaan output and the generated data at each
replication. Users can get the characteristics of the generated data and also com-
pare the characteristics with the generated output. The output from this function
in each replication will be saved in the simulation output (SimResult), and can
be obtained using the getExtraOutput function.

pmMCAR The percentage of data completely missing at random (0 <= pmMCAR < 1).
Either a single value or a vector of values in order to vary pmMCAR across
replications (with length equal to nRep or a divisor of nRep). The objMissing
argument is only required when specifying complex missing value data genera-
tion, or when using multiple imputation.

pmMAR The percentage of data missing at random (0 <= pmCAR < 1). Either a single
value or a vector of values in order to vary pmCAR across replications (with
length equal to nRep or a divisor of nRep). The objMissing argument is only
required when specifying complex missing value data generation, or when using
multiple imputation.

facDist Factor distributions. Either a list of SimDataDist objects or a single SimDataDist
object to give all factors the same distribution. Use when sequential is TRUE.

indDist Indicator distributions. Either a list of SimDataDist objects or a single SimDataDist
object to give all indicators the same distribution. Use when sequential is
FALSE.

errorDist An object or list of objects of type SimDataDist indicating the distribution of
errors. If a single SimDataDist is specified, each error will be genrated with
that distribution.

sequential If TRUE, a sequential method is used to generate data in which factor data is
generated first, and is subsequently applied to a set of equations to obtain the
indicator data. If FALSE, data is generated directly from model-implied mean
and covariance of the indicators.

saveLatentVar If TRUE, the generated latent variable scores and measurement error scores are
also provided as the attribute of the generated data. Users can use the outfundata
to compare the latent variable scores with the estimated output. The sequential
argument must be TRUE in order to use this option.

modelBoot When specified, a model-based bootstrap is used for data generation (for use
with the realData argument). See draw for further information.

realData A data.frame containing real data. Generated data will follow the distribution of
this data set.

covData A data.frame containing covariate data, which can have any distributions. This
argument is required when users specify GA or KA matrices in the model template
(SimSem).

maxDraw The maximum number of attempts to draw a valid set of parameters (no negative
error variance, standardized coefficients over 1).

misfitType Character vector indicating the fit measure used to assess the misfit of a set of
parameters. Can be "f0", "rmsea", "srmr", or "all".

misfitBounds Vector that contains upper and lower bounds of the misfit measure. Sets of
parameters drawn that are not within these bounds are rejected.
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averageNumMisspec

If TRUE, the provided fit will be divided by the number of misspecified parame-
ters.

optMisfit Character vector of either "min" or "max" indicating either maximum or mini-
mum optimized misfit. If not null, the set of parameters out of the number of
draws in "optDraws" that has either the maximum or minimum misfit of the
given misfit type will be returned.

optDraws Number of parameter sets to draw if optMisfit is not null. The set of parameters
with the maximum or minimum misfit will be returned.

createOrder The order of 1) applying equality/inequality constraints, 2) applying misspeci-
fication, and 3) fill unspecified parameters (e.g., residual variances when total
variances are specified). The specification of this argument is a vector of dif-
ferent orders of 1 (constraint), 2 (misspecification), and 3 (filling parameters).
For example, c(1, 2, 3) is to apply constraints first, then add the misspecifica-
tion, and finally fill all parameters. See the example of how to use it in the draw
function.

aux The names of auxiliary variables saved in a vector.

group The name of the group variable. This argument is used when lavaan script
or MxModel is used in the model only. When generating data from a multigroup
population model, the grouping variable in each generated data set will be named
"group", so when additionally using a multigroup analysis model, users must
specify this argument as group="group".

mxFit A logical whether to find an extensive list of fit measures (which will be slower).
This argument is applicable when MxModel is used in the model argument only.

mxMixture A logical whether to the analysis model is a mixture model. This argument is
applicable when MxModel is used in the model argument only.

citype Type of confidence interval. For the current version, this argument will be for-
warded to the "boot.ci.type" argument in the parameterEstimates function
from the lavaan package. This argument is not active when the OpenMx package
is used.

cilevel Confidence level. For the current version, this argument will be forwarded to
the "level" argument in the parameterEstimates function from the lavaan
package. This argument is not active when the OpenMx package is used.

seed Random number seed. Note that the seed number is always fixed in the simsem
so that users can always replicate the same simulatin or can be confidence that
the same data set are generated. Reproducibility across multiple cores or clusters
is ensured using R’Lecuyer package.

silent If TRUE, suppress warnings.

multicore Users may put TRUE or FALSE. If TRUE, multiple processors within a computer
will be utilized. The default value is FALSE. Users may permanently change the
default value by assigning the following line: options('simsem.multicore'
= TRUE)

cluster Not applicable now. Used to specify nodes in hpc in order to be parallelizable.

numProc Number of processors for using multiple processors. If it is NULL, the package
will find the maximum number of processors.
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paramOnly If TRUE, only the parameters from each replication will be returned.

dataOnly If TRUE, only the raw data generated from each replication will be returned.

smartStart Defaults to FALSE. If TRUE, population parameter values that are real numbers
will be used as starting values. When tested in small models, the time elapsed
when using population values as starting values was greater than the time re-
duced during analysis, and convergence rates were not affected.

previousSim A result object that users wish to add the results of the current simulation in

completeRep If TRUE, the function will run until the number of convergent replication equal
to the specified nRep.

stopOnError If TRUE, stop running the simulation when the error occurs during the data anal-
ysis on any replications.

... Additional arguments to be passed to lavaan. See also lavOptions

Details

This function is executed as follows: 1. parameters are drawn from the specified data-generation
model (applicable only simsem model template, SimSem, only), 2. the drawn (or the specified)
parameters are used to create data, 3. data can be transformed using the datafun argument, 4.
specified missingness (if any) is imposed, 5. data are analyzed using the specified analysis model,
6. parameter estimates, standard errors, fit indices, and other characteristics of a replication are
extracted, 7. additional outputs (if any) are extracted using the outfun argument, and 8. results
across replications are summarized in a result object, SimResult).

There are six ways to provide or generate data in this function:

1. SimSem can be used as a template to generate data, which can be created by the model function.
The SimSem can be specified in the generate argument.

2. lavaan script, parameter table for the lavaan package, or a list of arguments for the simulateData
function. The lavaan script can be specified in the generate argument.

3. MxModel object from the OpenMx package. The MxModel object can be specified in the generate
argument.

4. A list of raw data for each replication can be provided for the rawData argument. The sim
function will analyze each data and summarize the result. Note that the generate, n and nRep
could not be specified if the list of raw data is provided.

5. Population data can be provided for the rawData argument. The sim function will randomly
draw sample data sets and analyze data. Note that the n and nRep must be specified if the
population data are provided. The generate argument must not be specified.

6. A function can be used to generate data. The function must take sample size in a numeric
format (or a vector of numerics for multiple groups) and return a data frame of the generated
data set. Note that parameter values and their standardized values can be provided by using the
attributes of the resulting data set. That is, users can assign parameter values and standardized
parameter values to attr(data, "param") and attr(data, "stdparam").

Note that all generated or provided data can be transformed based on Bollen-Stine approach by
providing a real data in the realData argument if any of the first three methods are used.

There are four ways to analyze the data sets for each replication by setting the model argument as
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1. SimSem can be used as a template for data analysis.

2. lavaan script, parameter table for the lavaan package, or a list of arguments for the lavaan,
sem, cfa, or growth function. Note that if the desired function to analyze data can be specified
in the lavaanfun argument, which the default is the lavaan function

3. MxModel object from the OpenMx package. The object does not need to have data inside. Note
that if users need an extensive fit indices, the mxFit argument should be specified as TRUE. If
users wish to analyze by mixture model, the mxMixture argument should be TRUE such that
the sim function knows how to handle the data.

4. A function that takes a data set and returns a list. The list must contain at least three objects:
a vector of parameter estimates (coef), a vector of standard error (se), and the convergence
status as TRUE or FALSE (converged). There are seven optional objects in the list: a vector
of fit indices (fit), a vector of standardized estimates (std), a vector of standard errors of
standardized estimates (stdse), fraction missing type I (FMI1), fraction missing type II (FMI2),
lower bounds of confidence intervals (cilower), and upper bounds of confidence intervals
(ciupper). Note that the coef, se, std, stdse, FMI1, FMI2, cilower, and ciupper must be a
vector with names. The name of those vectors across different objects must be the same. Users
may optionally specify other objects in the list; however, the results of the other objects will
not be automatically combined. Users need to specify the outfun argument to get the extra
objects. For example, researchers may specify residuals in the list. The outfun argument
should have the function as follows: function(obj) obj$residuals.

Any combination of data-generation methods and data-analysis methods are valid. For example,
data can be simulated using lavaan script and analyzed by MxModel. Paralleled processing can be
enabled using the multicore argument.

Value

A result object (SimResult)

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd.edu>) Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult for the resulting output description

Examples

# Please go to https://simsem.org/ for more examples in the Vignettes.

## Example of using simsem model template
library(lavaan)

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
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diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")

# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model, n=200)
summary(Output)

## Example of using lavaan model syntax

popModel <- "
f1 =~ 0.7*y1 + 0.7*y2 + 0.7*y3
f2 =~ 0.7*y4 + 0.7*y5 + 0.7*y6
f1 ~~ 1*f1
f2 ~~ 1*f2
f1 ~~ 0.5*f2
y1 ~~ 0.49*y1
y2 ~~ 0.49*y2
y3 ~~ 0.49*y3
y4 ~~ 0.49*y4
y5 ~~ 0.49*y5
y6 ~~ 0.49*y6
"

analysisModel <- "
f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
"

Output <- sim(5, model=analysisModel, n=200, generate=popModel, std.lv=TRUE, lavaanfun = "cfa")
summary(Output)

## Example of using raw data as the population
pop <- data.frame(y1 = rnorm(100000, 0, 1), y2 = rnorm(100000, 0, 1))
covModel <- " y1 ~~ y2 "
Output <- sim(5, model=covModel, n=200, rawData=pop, lavaanfun = "cfa")
summary(Output)

## Example of user-defined functions:

# data-transformation function: Transforming to standard score
fun1 <- function(data) {
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temp <- scale(data)
as.data.frame(temp)

}

# additional-output function: Extract modification indices from lavaan
fun2 <- function(out) {
inspect(out, "mi")

}

# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model,n=200,datafun=fun1, outfun=fun2)
summary(Output)

# Get modification indices
getExtraOutput(Output)

## Example of additional output: Comparing latent variable correlation

outfundata <- function(out, data) {
predictcor <- lavInspect(out, "est")$psi[2, 1]
latentvar <- attr(data, "latentVar")[,c("f1", "f2")]
latentcor <- cor(latentvar)[2,1]
latentcor - predictcor

}
Output <- sim(5, CFA.Model, n=200, sequential = TRUE, saveLatentVar = TRUE,

outfundata = outfundata)
getExtraOutput(Output)

## Example of analyze using a function

analyzeFUN <- function(data) {
out <- lm(y2 ~ y1, data=data)
coef <- coef(out)
se <- sqrt(diag(vcov(out)))
fit <- c(loglik = as.numeric(logLik(out)))
converged <- TRUE # Assume to be convergent all the time
return(list(coef = coef, se = se, fit = fit, converged = converged))

}
Output <- sim(5, model=analyzeFUN, n=200, rawData=pop, lavaanfun = "cfa")
summary(Output)

SimDataDist-class Class "SimDataDist": Data distribution object

Description

This class will provide the distribution of a dataset.
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Objects from the Class

Objects can be created by bindDist function. It can also be called from the form new("SimDataDist",
...).

Slots

p: Number of variables
margins: A character vector specifying all the marginal distributions
paramMargins: A list whose each component is a list of named components, giving the parameter

values of the marginal distributions.
keepScale: Transform back to retain the mean and standard deviation of a variable equal to the

model implied mean and standard deviation (with sampling error)
reverse: To mirror each variable or not. If TRUE, reverse the distribution of a variable (e.g., from

positive skewed to negative skewed).
copula: The multivariate copula template for data generation. See bindDist

skewness: The target skewness values of each variable
kurtosis: The target (excessive) kurtosis values of each variable

Methods

• summaryTo summarize the object
• plotDistTo plot a density distribution (for one variable) or a contour plot (for two variables).

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• bindDist The constructor of this class.

Examples

showClass("SimDataDist")

d1 <- list(df=2)
d2 <- list(df=3)
d3 <- list(df=4)
d4 <- list(df=5)
d5 <- list(df=3)
d6 <- list(df=4)
d7 <- list(df=5)
d8 <- list(df=6)

dist <- bindDist(c(rep("t", 4), rep("chisq", 8)), d1, d2, d3, d4, d5, d6, d7, d8, d5, d6, d7, d8)
summary(dist)

dist2 <- bindDist(skewness = seq(-3, 3, length.out=12), kurtosis = seq(2, 5, length.out=12))
summary(dist2)
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SimMatrix-class Matrix object: Random parameters matrix

Description

This object can be used to represent a matrix in SEM model. It contains free parameters, fixed
values, starting values, and model misspecification. This object can be represented mean, intercept,
or variance vectors.

Objects from the Class

This object is created by bind or binds function.

Slots

free: The free-parameter vector. Any NA elements or character elements are free. Any numeric
elements are fixed as the specified number. If any free elements have the same characters
(except NA), the elements are equally constrained.

popParam: Real population parameters of the free elements.

misspec: Model misspecification that will be added on top of the fixed and real parameters.

symmetric: If TRUE, the specified matrix is symmetric.

Methods

rawDraw Draws data-generation parameters.

summaryShort Provides a short summary of all information in the object

summary Provides a thorough description of all information in the object

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimVector for random parameter vector.

Examples

showClass("SimMatrix")

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
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summary(LY)
rawDraw(LY)

LY <- bind(loading, "rnorm(1, 0.6, 0.05)")
summary(LY)
rawDraw(LY)

mis <- matrix("runif(1, -0.1, 0.1)", 6, 2)
mis[is.na(loading)] <- 0
LY <- bind(loading, "rnorm(1, 0.6, 0.05)", mis)
summary(LY)
rawDraw(LY)

SimMissing-class Class "SimMissing"

Description

Missing information imposing on the complete dataset

Objects from the Class

Objects can be created by miss function.

Slots

cov: Column indices of any normally distributed covariates used in the data set.

pmMCAR: Decimal percent of missingness to introduce completely at random on all variables.

pmMAR: Decimal percent of missingness to introduce using the listed covariates as predictors.

logit: The script used for imposing missing values by logistic regression. See miss for further
details.

nforms: The number of forms for planned missing data designs, not including the shared form.

itemGroups: List of lists of item groupings for planned missing data forms. Without this, items
will be divided into groups sequentially (e.g. 1-3,4-6,7-9,10-12)

twoMethod: Vector of (percent missing, column index). Will put a given percent missing on that
column in the matrix to simulate a two method planned missing data research design.

prAttr: Probability (or vector of probabilities) of an entire case being removed due to attrition at
a given time point. See imposeMissing for further details.

m: The number of imputations. The default is 0 such that the full information maximum likelihood
is used.

package: The package to be used in multiple imputation. The default value of this function is
"default". For the default option, if m is 0, the full information maximum likelihood is used.
If m is greater than 0, the mice package is used.
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convergentCutoff: If the proportion of convergent results across imputations are greater than the
specified value (the default is 80%), the analysis on the dataset is considered as convergent.
Otherwise, the analysis is considered as nonconvergent. This attribute is applied for multiple
imputation only.

timePoints: Number of timepoints items were measured over. For longitudinal data, planned
missing designs will be implemented within each timepoint.

ignoreCols: The columns not imposed any missing values for any missing data patterns

threshold: The threshold of covariates that divide between the area to impose missing and the
area not to impose missing. The default threshold is the mean of the covariate.

covAsAux: If TRUE, the covariate listed in the object will be used as auxiliary variables when putting
in the model object. If FALSE, the covariate will be included in the analysis.

logical: A matrix of logical values (TRUE/FALSE). If a value in the dataset is corresponding to the
TRUE in the logical matrix, the value will be missing.

args: A list of additional options to be passed to the multiple impuatation function in each package.

Methods

• summary To summarize the object

• impose To impose missing information into data

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd.edu>) Alexander M. Schoemann (East
Carolina University; <schoemanna@ecu.edu>) Kyle Lang (University of Kansas; <kylelang@ku.edu>)
Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• imposeMissing for directly imposing missingness into a dataset.

Examples

misstemplate <- miss(pmMCAR=0.2)
summary(misstemplate)

SimResult-class Class "SimResult": Simulation Result Object

Description

This class will save data analysis results from multiple replications, such as fit indices cutoffs or
power, parameter values, model misspecification, etc.

Objects from the Class

Objects can be created by sim.
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Slots

modelType: Analysis model type (CFA, Path, or SEM)

nRep: Number of replications have been created and run simulated data.

coef: Parameter estimates from each replication

se: Standard errors of parameter estimates from each replication

fit: Fit Indices values from each replication

converged: The convergence status of each replication: 0 = convergent, 1 = not convergent, 2
= nonconvergent in multiple imputed results, 3 = improper solutions for SE (less than 0 or
NA), 4 = converged with improper solution for latent or observed (residual) covariance matrix
(i.e., nonpositive definite, possible due to a Heywood case). For multiple imputations, these
codes are applied when the proporion of imputed data sets with that characteristic is below the
convergentCutoff threshold (see linkS4class{SimMissing}). For OpenMx analyses only,
a code "7" indicates Optimal estimates could not be obtained ("Status 6" in OpenMx).

seed: integer used to set the seed for the L’Ecuyer-CMRG pseudorandom number generator.

paramValue: Population model underlying each simulated dataset.

stdParamValue: Standardized parameters of the population model underlying each simulated dataset.

paramOnly: If TRUE, the result object saves only population characteristics and do not save sample
characteristics (e.g., parameter estimates and standard errors.

misspecValue: Misspecified-parameter values that are imposed on the population model in each
replication.

popFit: The amount of population misfit. See details at summaryMisspec

FMI1: Fraction Missing Method 1.

FMI2: Fraction Missing Method 2.

cilower: Lower bounds of confidence interval.

ciupper: Upper bounds of confidence interval.

stdCoef: Standardized coefficients from each replication

stdSe: Standard Errors of Standardized coefficients from each replication

n: The total sample size of the analyzed data.

nobs: The sample size within each group.

pmMCAR: Percent missing completely at random.

pmMAR: Percent missing at random.

extraOut: Extra outputs obtained from running the function specified in outfun argument in the
sim function.

timing: Time elapsed in each phase of the simulation.

Methods

The following methods are listed alphabetically. More details can be found by following the link of
each method.



SimResult-class 129

• anova to find the averages of model fit statistics and indices for nested models, as well as the
differences of model fit indices among models. This function requires at least two SimResult
objects.

• coef to extract parameter estimates of each replication

• findCoverage to find a value of independent variables (e.g., sample size) that provides a given
value of coverage rate.

• findPower to find a value of independent variables (e.g., sample size) that provides a given
value of power of a parameter estimate.

• getCoverage to get the coverage rate of the confidence interval of each parameter estimate

• getCIwidth to get a median or percentile rank (assurance) of confidence interval widths of
parameters estimates

• getCutoff to get the cutoff of fit indices based on a priori alpha level.

• getCutoffNested to get the cutoff of the difference in fit indices of nested models based on
a priori alpha level.

• getCutoffNonNested to get the cutoff of the difference in fit indices of nonnested models
based on a priori alpha level.

• getExtraOutput to get extra outputs that users requested before running a simulation

• getPopulation to get population parameter values underlying each dataset

• getPower to get the power of each parameter estimate

• getPowerFit to get the power in rejecting alternative models based on absolute model fit
cutoff.

• getPowerFitNested to get the power in rejecting alternative models based on the difference
between model fit cutoffs of nested models.

• getPowerFitNonNested to get the power in rejecting alternative models based on the differ-
ence between model fit cutoffs of nonnested models.

• inspect Extract target information from the simulation result. The available information is
listed in this link

• likRatioFit to find the likelihood ratio (or Bayes factor) based on the bivariate distribution
of fit indices

• plotCoverage to plot the coverage rate of confidence interval of parameter estimates

• plotCIwidth to plot confidence interval widths with a line of a median or percentile rank
(assurance)

• plotCutoff to plot sampling distributions of fit indices with an option to draw fit indices
cutoffs by specifying a priori alpha level.

• plotCutoffNested to plot sampling distributions of the difference in fit indices between
nested models with an option to draw fit indices cutoffs by specifying a priori alpha level.

• plotCutoffNonNested to plot sampling distributions of the difference in fit indices between
nonnested models with an option to draw fit indices cutoffs by specifying a priori alpha level.

• plotMisfit to visualize the population misfit and misspecified parameter values

• plotPower to plot power of parameter estimates

• plotPowerFit to plot the power in rejecting alternative models based on absolute model fit
cutoff.
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• plotPowerFitNested to plot the power in rejecting alternative models based on the difference
between model fit cutoffs of nested models.

• plotPowerFitNonNested to plot the power in rejecting alternative models based on the dif-
ference between model fit cutoffs of nonnested models.

• pValue to find a p-value in comparing sample fit indices with the null sampling distribution
of fit indices

• pValueNested to find a p-value in comparing the difference in sample fit indices between
nested models with the null sampling distribution of the difference in fit indices

• pValueNonNested to find a p-value in comparing the difference in sample fit indices between
nonnested models with the null sampling distribution of the difference in fit indices

• setPopulation to set population model for computing bias

• summary to summarize the result output

• summaryConverge to provide a head-to-head comparison between the characteristics of con-
vergent and nonconvergent replications

• summaryMisspec to provide a summary of model misfit

• summaryParam to summarize all parameter estimates

• summaryPopulation to summarize the data generation population underlying the simulation
study.

• summarySeed to provide a summary of the seed number in the simulation

• summaryShort to provide a short summary of the result output

• summaryTime to provide a summary of time elapsed in the simulation

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• sim for the constructor of this class

Examples

showClass("SimResult")
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=500, CFA.Model)

# Summary the simulation result
summary(Output)
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# Short summary of the simulation result
summaryShort(Output)

# Find the fit index cutoff
getCutoff(Output, 0.05)

# Summary of parameter estimates
summaryParam(Output)

# Summary of population parameters
summaryPopulation(Output)

SimSem-class Class "SimSem"

Description

The template containing data-generation and data-analysis specification

Objects from the Class

Objects can be created by model.

Slots

pt: Parameter table used in data analysis

dgen: Data generation template

modelType: Type of models (CFA, Path, or SEM) contained in this object

groupLab: The label of grouping variable

con: The list of defined parameters, equality constraints, or inequality constraints specified in the
model

Methods

summary Get the summary of model specification

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd.edu>), Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• Create an object this class by CFA, Path Analysis, or SEM model by model.
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Examples

showClass("SimSem")

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
loadingValues[1:3, 1] <- 0.7
loadingValues[4:6, 2] <- 0.7
LY <- bind(loading, loadingValues)
summary(LY)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

# Error Correlation Object
error.cor <- matrix(0, 6, 6)
diag(error.cor) <- 1
RTE <- binds(error.cor)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")
summary(CFA.Model)

SimVector-class Vector object: Random parameters vector

Description

This object can be used to represent a vector in SEM model. It contains free parameters, fixed
values, starting values, and model misspecification. This object can be represented mean, intercept,
or variance vectors.

Objects from the Class

This object is created by bind function.

Slots

free: The free-parameter vector. Any NA elements or character elements are free. Any numeric
elements are fixed as the specified number. If any free elements have the same characters
(except NA), the elements are equally constrained.

popParam: Real population parameters of the free elements.

misspec: Model misspecification that will be added on top of the fixed and real parameters.
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Methods

rawDraw Draws data-generation parameters.

summaryShort Provides a short summary of all information in the object

summary Provides a thorough description of all information in the object

Author(s)

Patrick Miller (University of Notre Dame; <pmille13@nd.edu>) Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

SimMatrix for random parameter matrix

Examples

showClass("SimVector")

factor.mean <- rep(NA, 2)
factor.mean.starting <- c(5, 2)
AL <- bind(factor.mean, factor.mean.starting)
rawDraw(AL)
summary(AL)
summaryShort(AL)

summaryConverge Provide a comparison between the characteristics of convergent repli-
cations and nonconvergent replications

Description

This function provides a comparison between the characteristics of convergent replications and non-
convergent replications. The comparison includes sample size (if varying), percent missing com-
pletely at random (if varying), percent missing at random (if varying), parameter values, misspecified-
parameter values (if applicable), and population misfit (if applicable).

Usage

summaryConverge(object, std = FALSE, improper = TRUE)

Arguments

object SimResult object being described

std If TRUE, the standardized parameter values are used instead of unstandardized
parameter values.

improper If TRUE, include the replications that provided improper solutions
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Value

A list with the following elements:

• Converged The number of convergent and nonconvergent replications

• n Sample size

• pmMCAR Percent missing completely at random

• pmMAR Percent missing at random

• paramValue Parameter values

• misspecValue Misspecified-parameter values

• popFit Population misfit. See details of each element at summaryMisspec.

Each element will provide the head-to-head comparison between convergent and nonconvergent
replications properties.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

## Not run:
path.BE <- matrix(0, 4, 4)
path.BE[3, 1:2] <- NA
path.BE[4, 3] <- NA
starting.BE <- matrix("", 4, 4)
starting.BE[3, 1:2] <- "runif(1, 0.3, 0.5)"
starting.BE[4, 3] <- "runif(1, 0.5, 0.7)"
mis.path.BE <- matrix(0, 4, 4)
mis.path.BE[4, 1:2] <- "runif(1, -0.1, 0.1)"
BE <- bind(path.BE, starting.BE, misspec=mis.path.BE)

residual.error <- diag(4)
residual.error[1,2] <- residual.error[2,1] <- NA
RPS <- binds(residual.error, "rnorm(1, 0.3, 0.1)")

loading <- matrix(0, 12, 4)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loading[7:9, 3] <- NA
loading[10:12, 4] <- NA
mis.loading <- matrix("runif(1, -0.3, 0.3)", 12, 4)
mis.loading[is.na(loading)] <- 0
LY <- bind(loading, "runif(1, 0.7, 0.9)", misspec=mis.loading)

mis.error.cor <- matrix("rnorm(1, 0, 0.1)", 12, 12)
diag(mis.error.cor) <- 0
RTE <- binds(diag(12), misspec=mis.error.cor)

SEM.Model <- model(RPS = RPS, BE = BE, LY=LY, RTE=RTE, modelType="SEM")
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n1 <- list(mean = 0, sd = 0.1)
chi5 <- list(df = 5)

facDist <- bindDist(c("chisq", "chisq", "norm", "norm"), chi5, chi5, n1, n1)

# In reality, more than 50 replications are needed.
simOut <- sim(50, n=500, SEM.Model, sequential=TRUE, facDist=facDist, estimator="mlr")

# Summary the convergent and nonconvergent replications
summaryConverge(simOut)

## End(Not run)

summaryFit Provide summary of model fit across replications

Description

This function will provide fit index cutoffs for values of alpha, and mean fit index values across all
replications.

Usage

summaryFit(object, alpha = NULL, improper = TRUE, usedFit = NULL)

Arguments

object SimResult to be summarized
alpha The alpha level used to find the fit indices cutoff. If there is no varying condition,

a vector of different alpha levels can be provided.
improper If TRUE, include the replications that provided improper solutions
usedFit Vector of names of fit indices that researchers wish to summarize.

Value

A data frame that provides fit statistics cutoffs and means

When linkS4class{SimResult} has fixed simulation parameters the first colmns are fit index
cutoffs for values of alpha and the last column is the mean fit across all replications. Rows are

• Chi Chi-square fit statistic
• AIC Akaike Information Criterion
• BIC Baysian Information Criterion
• RMSEA Root Mean Square Error of Approximation
• CFI Comparative Fit Index
• TLI Tucker-Lewis Index
• SRMR Standardized Root Mean Residual

When linkS4class{SimResult} has random simulation parameters (sample size or percent miss-
ing), columns are the fit indices listed above and rows are values of the random parameter.
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Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>) Sunthud Pornprasert-
manit (<psunthud@gmail.com>)

See Also

SimResult for the result object input

Examples

loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=500, CFA.Model)

# Summarize the sample fit indices
summaryFit(Output)

summaryMisspec Provide summary of the population misfit and misspecified-parameter
values across replications

Description

This function provides the summary of the population misfit and misspecified-parameter values
across replications. The summary will be summarized for the convergent replications only.

Usage

summaryMisspec(object, improper = TRUE)

Arguments

object SimResult object being described

improper If TRUE, include the replications that provided improper solutions
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Value

A data frame that provides the summary of population misfit and misspecified-parameter values
imposed on the real parameters.

The discrepancy value (f0; Browne & Cudeck, 1992) is calculated by

F0 = tr
(
Σ̃Σ−1

)
− log

∣∣∣Σ̃Σ−1
∣∣∣− p+ (µ̃− µ)

′
Σ−1 (µ̃− µ) .

where µ is the model-implied mean from the real parameters, Σ is the model-implied covariance
matrix from the real parameters, µ̃ is the model-implied mean from the real and misspecified pa-
rameters, Σ̃ is the model-implied covariance matrix from the real and misspecified parameter, p is
the number of indicators. For the multiple groups, the resulting f0 value is the sum of this value
across groups.

The root mean squared error of approximation (rmsea) is calculated by

rmsea =

√
f0
df

where df is the degree of freedom in the real model.

The standardized root mean squared residual (srmr) can be calculated by

srmr =

√√√√√2
∑

g

∑
i

∑
j≤i

(
sgij√

sgii
√
sgjj

− σ̂gij√
σ̂gii

√
σ̂gjj

)
g × p(p+ 1)

where sgij is the observed covariance between indicators i and j in group g, σ̂ij is the model-implied
covariance between indicators i and j in group g, p is the number of indicators.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Meth-
ods & Research, 21, 230-258.

See Also

SimResult for the object input

Examples

## Not run:
path <- matrix(0, 4, 4)
path[3, 1:2] <- NA
path[4, 3] <- NA
pathVal <- matrix("", 4, 4)
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pathVal[3, 1:2] <- "runif(1, 0.3, 0.5)"
pathVal[4, 3] <- "runif(1, 0.5, 0.7)"
pathMis <- matrix(0, 4, 4)
pathMis[4, 1:2] <- "runif(1, -0.1, 0.1)"
BE <- bind(path, pathVal, pathMis)

residual.error <- diag(4)
residual.error[1,2] <- residual.error[2,1] <- NA
RPS <- binds(residual.error, "rnorm(1, 0.3, 0.1)")

Path.Model <- model(RPS = RPS, BE = BE, modelType="Path")

# The number of replications in actual analysis should be much more than 5
ParamObject <- sim(5, n=200, Path.Model)

# Summarize the model misspecification that is specified in the 'pathMis' object
summaryMisspec(ParamObject)

## End(Not run)

summaryParam Provide summary of parameter estimates and standard error across
replications

Description

This function will provide averages of parameter estimates, standard deviations of parameter es-
timates, averages of standard errors, and power of rejection with a priori alpha level for the null
hypothesis of parameters equal 0.

Usage

summaryParam(object, alpha = 0.05, std = FALSE, detail = FALSE,
improper = TRUE, digits = NULL, matchParam = FALSE)

Arguments

object SimResult object being described

alpha The alpha level used to find the statistical power of each parameter estimate

std If TRUE, (a) standardized coefficients and their standard errors substitute un-
standardized coefficients, (b) standardized parameter values substitute param-
eter values, (c) confidence intervals of standardized coefficients are calculated
using Wald confidence interval, and (d) all results (e.g., biases or coverage) are
calculated based on standardized coefficients.

detail If TRUE, more details about each parameter estimate are provided, such as rel-
ative bias, standardized bias, or relative standard error bias.

improper If TRUE, include the replications that provided improper solutions
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digits The number of digits rounded in the result. If NULL, the results will not be
rounded.

matchParam If TRUE, only parameter estimates that have the same names as the parameter val-
ues will be reported. This argument is recommended when users know that the
data-generation model and analysis model are the same. Then the comparison
between the parameter estimates and parameter value will be valid.

Value

A data frame that provides the statistics described above from all parameters. For using with
linkS4class{SimResult}, each column means

• Estimate.Average: Average of parameter estimates across all replications

• Estimate.SD: Standard Deviation of parameter estimates across all replications

• Average.SE: Average of standard errors across all replications

• Power (Not equal 0): Proportion of significant replications when testing whether the param-
eters are different from zero. The alpha level can be set by the alpha argument of this function.

• Average.Param: Parameter values or average values of parameters if random parameters are
specified

• SD.Param: Standard Deviations of parameters. Show only when random parameters are spec-
ified.

• Average.Bias: The difference between parameter estimates and parameter underlying data

• SD.Bias: Standard Deviations of bias across all replications. Show only when random param-
eters are specified. This value is the expected value of average standard error when random
parameter are specified.

• Coverage: The percentage of (1-alpha)% confidence interval covers parameters underlying
the data.

• Rel.Bias: Relative Bias, which is (Estimate.Average - Average.Param)/Average.Param.
Hoogland and Boomsma (1998) proposed that the cutoff of .05 may be used for acceptable
relative bias. This option will be available when detail=TRUE. This value will not be available
when parameter values are very close to 0.

• Std.Bias: Standardized Bias, which is (Estimate.Average - Average.Param)/Estimate.SD
for fixed parameters and (Estimate.Average - Average.Param)/SD.Bias for random param-
eters. Collins, Schafer, and Kam (2001) recommended that biases will be only noticeable
when standardized bias is greater than 0.4 in magnitude. This option will be available when
detail=TRUE

• Rel.SE.Bias: Relative Bias in standard error, which is (Average.SE - Estimate.SD)/Estimate.SD
for fixed parameters and (Average.SE - SD.Bias)/SD.Bias for random parameters. Hoogland
and Boomsma (1998) proposed that 0.10 is the acceptable level. This option will be available
when detail=TRUE

• Not Cover Below: The percentage of (1-alpha)% confidence interval does not cover the pa-
rameter and the parameter is below the confidence interval.

• Not Cover Above: The percentage of (1-alpha)% confidence interval does not cover the pa-
rameter and the parameter is above the confidence interval.

• Average CI Width: The average of (1-alpha)% confidence interval width across replications.
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• SD CI Width: The standard deviation of (1-alpha)% confidence interval width across replica-
tions.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and restrictive
strategies in modern missing data procedures. Psychological Methods, 6, 330-351.

Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling.
Sociological Methods & Research, 26, 329-367.

See Also

SimResult for the object input

Examples

showClass("SimResult")
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, 0.7)
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# We make the examples running only 5 replications to save time.
# In reality, more replications are needed.
Output <- sim(5, n=500, CFA.Model)

# Summary of the parameter estimates
summaryParam(Output)

# Summary of the parameter estimates with additional details
summaryParam(Output, detail=TRUE)

summaryPopulation Summarize the population model used for data generation underlying
a result object

Description

Summarize the population model used for data generation underlying a result object

Usage

summaryPopulation(object, std = FALSE, improper = TRUE)
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Arguments

object The result object that you wish to extract the data generation population model
from (linkS4class{SimResult}).

std If TRUE, the standardized parameter values are used instead of unstandardized
parameter values.

improper If TRUE, include the replications that provided improper solutions

Value

A data.frame contianing the summary of population model across replications.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

• SimResult for result object

Examples

## Not run:
loading <- matrix(0, 6, 1)
loading[1:6, 1] <- NA
LY <- bind(loading, "runif(1, 0.4, 0.9)")
RPS <- binds(diag(1))
RTE <- binds(diag(6))
CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA")

# We will use only 10 replications to save time.
# In reality, more replications are needed.
Output <- sim(10, n=200, model=CFA.Model)

# Get the summary of population model
summaryPopulation(Output)

## End(Not run)

summarySeed Summary of a seed number

Description

Summary of a seed number used in the simulation

Usage

summarySeed(object)
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Arguments

object SimResult object being described

Value

The first section is the seed number used in running the whole simulation. The second section is the
L’Ecuyer seed of the last replication.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")

# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model, n=200)
summarySeed(Output)

## End(Not run)

summaryShort Provide short summary of an object.

Description

Provide short summary if it is available. Otherwise, it is an alias for summary.

Usage

summaryShort(object, ...)
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Arguments

object Desired object being described
... any additional arguments

Value

NONE. This function will print on screen only.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

This is the list of classes that can use summaryShort method.

• SimMatrix

• SimVector

Examples

loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
loadingValues <- matrix(0, 6, 2)
LY <- bind(loading, "runif(1, 0.8, 0.9)")
summaryShort(LY)

summaryTime Time summary

Description

Provide a summary of time elapsed in running the simulation.

Usage

summaryTime(object, units = "seconds")

Arguments

object SimResult object being described
units The units of time, which can be "seconds", "minutes", "hours", or "days"

Value

The first section is the actual time used in each step of the simulation. The second section is the
average system (processor) time used in each replication. The third section is the summary of
starting time, end time, total actual time, and total system time.
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

## Not run:
loading <- matrix(0, 6, 2)
loading[1:3, 1] <- NA
loading[4:6, 2] <- NA
LY <- bind(loading, 0.7)

latent.cor <- matrix(NA, 2, 2)
diag(latent.cor) <- 1
RPS <- binds(latent.cor, 0.5)

RTE <- binds(diag(6))

VY <- bind(rep(NA,6),2)

CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType = "CFA")

# In reality, more than 5 replications are needed.
Output <- sim(5, CFA.Model, n=200)
summaryTime(Output)

## End(Not run)
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